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Abstract: Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising 

latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 

1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus 

where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular 

proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated 

complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in 

AAV2 and helpervirus infection. 
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ADENO-ASSOCIATED VIRUS - BIOLOGICAL PRO-

PERTIES 

 AAV2 is one of the most promising vectors for human 
gene therapy [1]. The apparent lack of pathogenicity and low 
immunogenicity together with the capability to infect both 
dividing and non-dividing cells constitute perfect 
characteristics for a transgene delivery vector. AAV2 is a 
small, icosahedral and non-enveloped particle, which has a 
size of about 20-22 nm in diameter. Its genome consists of a 
linear single-stranded DNA with a size of 4.7kb and encodes 
two open reading frames (ORF), rep and cap. The rep ORF 
is regulated by two promoters (p5 and p19) which in 
cooperation with a common splicing site encode four Rep 
proteins termed Rep40, Rep52, Rep68 and Rep78, named 
according to their apparent molecular weight. The two large 
Rep proteins Rep68 and Rep78 are required for AAV2 DNA 
replication, self-regulation of transcription, site-specific 
integration as well as for inhibition of helpervirus 
replication, whereas the smaller Rep40 and Rep52 are 
believed to be required for packaging [2-4]. The cap ORF is 
controlled by the p40 promoter and encodes the three 
structural proteins VP1, VP2 and VP3 [5,6]. Moreover, a 
nested alternative ORF of the cap gene has been shown 
recently to encode a protein, designated assembly-activating 
protein (AAP), which is believed to be required for AAV2 
capsid assembly in the nucleolus [7]. 

 AAV2 belongs to the family of the Parvoviridae and the 
genus Dependovirus, as its replication depends on the 
simultaneous infection with a helper virus, such as Ad, HSV-
1, or papillomavirus [8-12]. In absence of a helper virus 
however, AAV2 establishes a latent infection, either by 
maintaining its genome in an episomal state [13] or 
integrating it into a well-defined locus termed AAVS1 on 
human chromosome 19 (Ch19) at position 19q13.4 [14-18]. 
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Upon infection with a helpervirus, AAV2 is rescued from 
latency and enters a lytic life cycle in which the viral DNA is 
replicated and progeny virus is produced. 

 The AAV2 DNA has a unique structure. Its two ends are 
characterized by 145 nt palindromic sequences termed 
inverted terminal repeats (ITR) which fold into hairpins. Just 
as unique as the AAV2 DNA structure is the rolling-hairpin 
mechanism of AAV2 DNA replication: the end of the 3’-ITR 
acts as the essential primer for second-strand synthesis, a 
process termed self-priming. The following asymmetric 
leading-strand DNA synthesis resembles a rolling-circle 
model of DNA replication, resulting in a closed-end 
intermediate at the 3’-ITR. This structure is resolved by the 
so called terminal resolution step, which involves a site- and 
strand-specific endonuclease cut performed by Rep68/78 at 
the so called terminal resolution site (TRS; [19-21]). The 
following unwinding of the remaining 3’-ITR allows to 
complete the replication process. 

ADENOVIRUS AND HERPES SIMPLEX VIRUS TYPE 
1 - BIOLOGICAL PROPERTIES 

 Adenovirus is the best characterized helper virus for 
AAV2. Adenoviruses are non-enveloped, double-stranded 
DNA viruses. Their capsid is characterized by a well-defined 
icosahedral structure consisting of three major proteins, 
hexon (II), penton base (III) and long knobbed projection 
termed fiber (IV), which is required to bind to the cell 
surface adenoviral receptor (CAR). The linear 26-45 kb 
dsDNA has inverted terminal repeats (ITRs) at each end, 
where a terminal protein (TP) is covalently attached to it 
[22]. The genome encodes four early transcription cassettes 
termed E1 (E1A and E1B), E2, E3 and E4, and five late gene 
products designated L1 to L5 which result from a series of 
splicing events of the major late (ML) transcript and 
constitute the structural proteins. 

 The adenovirus life cycle can be divided into two phases. 
The early phase is determined as the entry of the particle into 
the cell and the trafficking of the viral genome to the nucleus 
where expression of the early genes occurs. The second, or 
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late, phase includes the virus DNA replication and the 
expression of late genes, followed by virus assembly and 
egress from the nucleus and the cell. 

 HSV-1 is another well characterized and efficient helper 
virus for AAV2 replication. It is a widespread human 
pathogen which has also both a lytic and a latent phase. It 
infects mainly mucosal tissue and neurons. The viral particle 
is composed of three structural compartments, (i) the viral 
envelope, (ii) the tegument consisting of a distinct set of 
viral proteins and (iii) the capsid which encloses the viral 
genome. The HSV-1 genome is a double-stranded DNA of 
152 kbp which encodes at least 84 proteins. 

 HSV-1 can enter the cell both by fusion at the cell 
membrane or endocytosis and fusion with the endosomal 
membrane. The capsid is transported along microtubules to 
the nuclear pores, where the HSV-1 DNA, along with 
specific HSV-1 tegument proteins such as VP16 and the 
virion host shut-off protein, enters the nucleus. VP16 then 
transactivates the expression of the viral immediate early 
(IE) genes via the cellular RNA polymerase II [23]. The IE 
proteins have regulatory functions and activate the 
expression of the early (E) genes. Many of the E gene 
products are enzymes involved in DNA metabolism and their 
synthesis initiates the replication of the HSV-1 genome. The 
IE gene products and the replication of the HSV-1 DNA then 
activate expression of the late (L) genes, which encode 
structural components of the virion. HSV-1 can also 
establish latent infections, primarily in sensory neurons. 
During latency, HSV-1 gene expression is limited to the 
latency-associated transcripts (LATs) and no viral proteins 
are synthesized [24]. The mechanisms that control 
productive or latent infection of HSV-1 are not fully 
understood. 

THE NUCLEAR REPLICATION COMPARTMENTS 
OF DNA VIRUSES 

Viral RCs Develop Adjacent to PML Bodies 

 Similar to many other DNA viruses including Ad and 
HSV-1, AAV2 DNA replication takes place in so called viral 
replication compartments (RCs) or replication centers in the 
host cell nucleus [25-29]. The cell nucleus is a highly 
structured and compartmentalized space, containing not only 
the genome but also a multitude of proteins organized in 
subnuclear organelles [30]. Several of these nuclear bodies 
including clastosomes, nuclear speckles, nucleoli, or 
promyelocytic leukemia (PML) bodies contain proteins 
involved in central cellular processes such as proteolysis, 
transcription, apoptosis, or DNA-damage sensing and repair 
[31]. It seems to be a general feature of nuclear replicating 
DNA viruses that incoming viral genomes initially associate 
with PML bodies (also termed as ND10 nuclear bodies) and 
that the viral replication centers mature juxtaposed to these 
nuclear subcompartments [32-34]. PML bodies are 
functionally complex, containing proteins not only involved 
in DNA replication, transcription, or epigenetic silencing but 
also in the host defense mechanisms against viral infection 
[35]. It seems that viruses have evolved strategies to exploit 
PML bodies in order to initiate viral gene transcription and 
viral DNA replication [32,36-39]. For that reason, the often 
observed initial association of incoming viral genomes with 
PML bodies [32-34] might be a consequence of the cellular 

front line defense against viruses, however efficiently 
hijacked by the virus. During Ad supported AAV2 
replication, AAV2 DNA has been found associated also with 
PML bodies [25], similar to cells infected with Ad alone 
[37,38], and AAV2 RCs mature juxtapose to PML bodies 
[25]. With the onset of infection, several replication and 
repair proteins, normally localized to PML bodies, have been 
found associated with Ad supported AAV2 RCs (discussed 
below). The HSV-1 ICP0 protein can efficiently disrupt 
PML bodies [40], and indeed, HSV-1-supported AAV2 RCs 
did not co-exist with PML bodies [25]. Nevertheless, integral 
cellular PML bodies might have an effect on initial AAV2 
gene expression as well as the composition of cellular 
proteins in AAV2 RCs, as similar to Ad coinfection, several 
cellular replication and repair factors of PML bodies 
accumulate also in HSV-1 supported AAV2 RCs (discussed 
below). 

Spatial and Temporal Organization of RCs 

 Viral RCs are composed of a multitude of cellular 
proteins. These factors may alter depending on the necessity 
of the different viruses but also depending on the different 
functions of viral RCs, which may change spatially and 
temporally over the course of replication. In HSV-1 infected 
cells, besides viral DNA and RNA metabolism, capsid 
assembly and genome packaging is also localized to viral 
RCs [41-43]. By contrast, Ad DNA replication and assembly 
is suggested to occur in distinct nuclear compartments [44]. 
AAV2 capsid assembly has been observed to occur also 
dislocated from viral RCs in nucleoli [45]. However, the site 
of genome packaging into pre-assembled capsids remains to 
be identified. 

 In the host cell, high transcriptional activity in G1 phase 
[46] is separated in a time dependent manner from genome 
replication in S-phase of the cell cycle. In contrast, viruses 
have to create an environment which enables high 
transcriptional activity of viral genes as well as the 
production of viral DNA for progeny virions in parallel. 
Therefore, viral RCs have to be well structured 
microenvironments not only in a temporal but also in a 
spatial manner. For example, Ad RCs are surrounded by 
ring-like structures called peripheral replicative zones, where 
Ad DNA replication, transcription, and pre-mRNA 
processing occur [47,48]. The defined pattern of VP5, ICP4, 
and ICP8 within HSV-1 RCs [41] also indicates a complex 
organization. In contrast, besides the well described vast 
growth dynamics of AAV2 RCs [25], not much is known 
about their spatial and temporal organization. The 
identification of factors associated with AAV2 RCs, as well 
as the definition of their localization may help to better 
understand the organization of helper supported AAV2 
replication. 

HSV-1 & AD HELPER VIRUS PROTEINS INVOLVED 
IN AAV2 REPLICATION 

 In addition to multiple cellular proteins, a defined set of 
helper virus proteins are involved in AAV2 replication. The 
best studied helper virus proteins for AAV2 replication are 
provided by Ad and HSV-1. In case of Ad, these helper 
factors include E1A, E1B55K, E2A, E4orf6, and the VA 
RNA [49-51]. The Ad E1A protein not only promotes 
transcription of the early Ad genes, but also transcription of 
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the AAV2 Rep ORF [52]. E1B55K and E4orf6 form a 
heterodimer that supports AAV2 mRNA export from the 
nucleus [53], and the VA RNAs play a central role in AAV2 
infection by maintaining protein translation [54]. The DNA-
binding protein E2A supports multiple steps of the AAV2 
life cycle including regulation of AAV2 gene expression, 
viral mRNA processing and export, and viral DNA 
replication [55,56]. 

 The minimal set of HSV-1 helper proteins required for 
AAV2 replication includes the helicase-primase complex 
encoded by UL5, UL8, and UL52 and the major DNA 
binding protein ICP8 (UL29; [57-59]). All of these proteins 
are also mandatory for HSV-1 replication [60]. In addition, 
the HSV-1 origin binding protein (UL9), the viral DNA 
polymerase (UL30) and the ds DNA binding protein UL42 
have been found to support AAV2 replication [57,58]. It has 
been shown that the UL5 helicase activity is necessary for 
efficient AAV2 DNA replication, whereas the primase-
activity of UL52 is redundant [61]. Although not much is 
known about the detailed function of ICP8 in AAV2 
replication, it seems that it is linked to the interaction with 
AAV2 Rep78, in an AAV2-ss DNA dependent manner 
[58,59,62]. 

 The minimal set of HSV-1 helper proteins (UL5, UL8, 
UL29, UL52) together with two other HSV-1 proteins, the 
viral DNA polymerase (UL30) and the ds DNA binding 
protein UL42, along with AAV2 Rep68 have been shown to 
be also sufficient to initiate replication of duplex DNA, 
containing the AAV2 origins of DNA replication, in an in 
vitro replication system [59]. 

CELLULAR PROTEINS ASSOCIATED WITH HSV-1 
OR AD SUPPORTED AAV2 RCs 

 While helper virus proteins involved in AAV2 replication 
are well studied [63], not much is known about the role of 
host proteins recruited to AAV2 RCs. Nevertheless, these 
proteins are likely implicated in several steps of the AAV2 
life cycle including AAV2 DNA replication, gene expression 
and posttranscriptional modification. The recruitment of host 
cell proteins into AAV2 RCs may alter, depending on the 
type of helper virus. However, it is likely that AAV2 might 
also recruit a set of indispensable cellular proteins, 
independent of the type of helper virus. 

 In order to identify host proteins associated with AAV2 
replication, co-immunoprecipitation (co-IP) assays of AAV2 
Rep78 and immunofluorescence analysis in presence or 
absence of a helper virus have been performed (Tables 1 and 
2; [64-73]). However, the majority of proteins were 
identified only by mass spectrometry of Rep78-associated 
complexes [64,68], and many of these interactions remain to 
be validated. Nevertheless, our aim was to analyze these 
cellular proteins concerning similarities and differences. We 
used the string database (http://string-db.org/) to reconstitute 
possible interaction networks between identified cellular 
proteins associated with AAV2 RCs in presence of Ad 
(Table 1, Fig. 1) or HSV-1 (Table 2, Fig. 2). The database 
lists confident known and predicted direct (physical) and 
indirect (functional) interactions between cellular proteins, 
based on experimental validations. 

 Based on the string database, the two main groups of 
cellular proteins of HSV-1 supported AAV2 RCs include 

DNA replication and repair proteins, and RNA splicing 
factors (Fig. 2). Similar to HSV-1 coinfection, a governing 
group of proteins associated with Ad supported AAV2 RCs 
belong to the cellular DNA replication and repair machinery 
(Fig. 1). In addition, a multitude of transcriptional regulators 
as well as RNA splicing factors and a noticeable network of 
mRNA and protein trafficking factors were identified in 
AAV2 and Ad coinfected cells (Fig. 1). Besides these main 
groups, also proteins involved in nuclear organization, 
translation, protein degradation, cytoplasmic signaling, and 
many more were identified in AAV2 Rep78 co-IP assays of 
cells coinfected with AAV2 and either HSV-1 or Ad as the 
helpervirus. In the following, we discuss a selection of these 
proteins in more detail including their potential functions in 
different steps of the AAV2 life cycle. 

PROTEINS INVOLVED IN AAV2 DNA AND RNA 
METABOLISM 

Cellular Proteins Promoting Initial AAV2 Second-Strand 

Synthesis and AAV2 DNA Replication 

 Due to the ss nature of the AAV2 genome, AAV2 
replication initially requires DNA second-strand synthesis 
before viral genes can be expressed and viral DNA 
replication can occur. The formation of ds genomes is a 
critical step for wtAAV2 to initiate productive infection, but 
also for rAAV2 vectors, as this step is of importance for 
successful expression of transgene sequences [74]. Second-
strand synthesis is believed to be mediated through the host 
replication machinery, but helper virus proteins might be 
involved as well [75]. 

 Prior to polymerase-mediated displacement of the 
parental DNA strand, a pre-replication complex is formed, 
which loads the whole DNA replication machinery onto the 
DNA [76]. The MCM proteins 2-7 are essential components 
of this complex [76]. Several of these proteins were found in 
both Ad and HSV-1 supported AAV2 RCs (Tables 1 and 2, 
Fig. 3) and have been also found to be required to replicate 
AAV2 DNA from a ssDNA template in an in vitro 
replication assay [77,78]. Upon initial second-strand 
synthesis MCM might participate in the formation of a 
replication complex on the 3’ end of the incoming ss AAV2 
DNA template. The complementary self-annealing sequence 
of the AAV2 ITR provides a base-paired 3’ hydroxyl group 
for initial unidirectional DNA synthesis [75]. Because AAV2 
provides its own DNA primer, viral DNA replication 
exclusively uses leading-strand DNA synthesis and not 
lagging-strand synthesis. Although both helper viruses, Ad 
and HSV-1, express their own polymerase, AAV2 seems to 
use only the HSV-1 polymerase [57], while the Ad DNA 
polymerase has not been found to be involved in AAV2 
DNA replication [49-51,79]. In contrast to AAV2 
replication, Ad DNA synthesis uses a protein priming 
mechanism in which the viral polymerase (AdPol) 
recognizes and binds to the viral preterminal protein (pTP); 
the pTP-dCMP complex then serves as the primer for 
subsequent elongation catalyzed by AdPol via a strand 
displacement mechanism. Since the AdPol needs to form a 
stable heterodimer with pTP to initiate its DNA replication 
via a protein priming mechanism, and AAV2 replication 
uses a DNA primer to initiate viral DNA replication, it is not 
surprising that the Ad polymerase does not contribute to 
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AAV2 DNA replication. HSV-1 replication is initiated by 
binding of the UL9 protein and unwinding of the HSV-1 ori 
[80]. Subsequently, the viral polymerase catalyzes DNA 
synthesis at the leading-strand and lagging-strand. At the 
eukaryotic replication fork, DNA polymerase delta (POLD) 
together with PCNA is suggested to build the lagging-strand 
replisome, and polymerase epsilon together with PCNA the 
leading-strand replisome [81]. However, PCNA together 
with POLD1 was found associated with AAV2-Rep78 
during coinfection with Ad (Table 1, Fig. 1) and therefore 
might be the essential polymerase for leading-strand 
synthesis of the viral DNA. In addition, chromatin 
immunoprecipitation (ChIP) studies revealed that DNA 
POLD, but not polymerase alpha and epsilon, directly binds 
to UV inactivated AAV2 genomes, independent of the 
presence of a helper virus [82]. Collectively, these findings 
are in line with the observation that upon SV40 infection, 
POLD is also responsible for leading-strand synthesis of the 
viral DNA [83]. Interestingly, PCNA and POLD1 were also  
 

found in HSV-1 supported AAV2 RCs (Table 2, Fig. 2), 
although the HSV-1 polymerase complex has been shown to 
be sufficient to promote productive AAV2 infection [57,58]. 
Second-strand synthesis of the ssAAV2 genome leads to the 
formation of a duplex DNA molecule that is covalently 
closed at one end by the hairpin structure of the ITR initially 
used as a DNA primer. In order to complete replication, in a 
next step called terminal resolution, the remaining hairpin 
has to be resolved and replicated to yield a linear ds DNA 
[75]. For this, the AAV2 Rep protein binds to the RBS motif 
in order to promote cleavage of one strand at the unique 
TRS. The regenerated 3’hydroxyl group within the ITR then 
provides the basis for the replication through the viral ITR 
[75]. In a last step called reinitiation, a double-hairpinned 
intermediate is formed by denaturation and reannealing of 
the linear ITR [75]. This last step initiates a new round of 
strand displacement synthesis, generating a ss AAV2 
genome that can be packaged into a capsid [75]. 

 

 

Fig. (1). Cellular proteins associated with Ad supported AAV2 RCs. The String database (http://string-db.org/) was used to reconstitute the 

interaction networks between identified cellular proteins associated with Ad supported AAV2 RCs and/or the AAV2 Rep78 protein. The 

database lists confident known and predicted direct (physical) and indirect (functional) interactions between cellular proteins based on 

experimental validations. Four functional categories, mRNA processing (blue), DNA replication (red), transcription (yellow), and DNA 

damage sensing and repair (green) are highlighted. 
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Table 1. Proteins Identified in Rep78-Associated Complexes and/or AAV2 RCs During Ad Supported AAV2 Replication 

 

Protein Name 
Gene Name/  

Abbreviation  
Alternative Names/ 

Abbreviations  
UniProt ID  Reference  

ATP-binding cassette subfamily D member 3  ABCD3  (PMP70, PXMP1)  P28288  [64]  

ATP-binding cassette subfamily E member 1  ABCE1  (RLI, RNASEL1, RNS4I)  P61221  [64]  

A-kinase anchor protein 12  AKAP12  (AKAP250)  Q02952  [64]  

ADP-ribosylation factor 1  ARF1   P84077  [64]  

Coatomer ADP-ribosylation factor 4  ARF4  (ARF2)  P18085  [64]  

Serine-protein kinase ATM  ATM  (A-T mutated)  Q13315  [65-66]  

Sodium/potassium-transporting ATPase   ATP1A1   P05023  [64]  

SERCA2A  ATP2A2  (ATP2B)  P16615  [64]  

ATP synthase subunit alpha, mitochondrial  ATP5A1  (ATP5AL2, ATPM )  P25705  [64]  

ATP synthase subunit beta, mitochondrial  ATP5B  (ATPMB, ATPSB)  P06576  [64]  

ATP synthase subunit gamma, mitochondrial  ATP5C1  (ATP5CL1, ATPG)  P36542  [64]  

ELG protein variant (fragment)  C17orf85  (ELG)  Q53F19  [64]  

Calcium-dependent protein kinase type II   CAMK2D   Q4G1A8  [64]  

Calcium-dependent protein kinase type II   CAMK2G   Q8WU40  [64]  

Coatomer subunit   COPA  (HEPCOP)  P53621  [64]  

Aspartyl-tRNA synthetase  DARS  DARS  Q53T60  [64]  

Dolichyl-diphosphooligosaccharide transferase  DDOST  (KIAA0115, OST48)  P39656  [64]  

DEAH (Asp-Glu-Ala-His) box polypeptide 9  DHX9   Q6PJK6  [64]  

DNA methyltransferase 1-associated protein 1  DMAP1  (KIAA1425)  Q9NPF5  [64]  

14-3-3 Dedicator of cytokinesis protein 7  DOCK7   A4FU72  [64]  

Dynein heavy chain, cytosolic  DYNC1H1   Q6P2H7  [64]  

Transcription factor E2F1  E2F1  (RBBP3)  Q01094  [69]  

Elongation factor 1-   EEF1G   Q53YD7  [64]  

Elongation factor 2  EEF2   Q6PK56  [64]  

Eukaryotic initiation factor 4A-I  EIF4A1  (DDX2A, eIF4FA1 )  P60842  [64]  

RNA-binding protein FUS  FUS  (TLS)  P35637  [64]  

Histone H2A.x  H2AFX  (H2AX, H2a/x)  P16104  [65]  

Histone deacetylase 2 variant (fragment)  HDAC2  (HD2)  Q92769  [64]  

HINT4 (histidine triad protein 3)  HINT3   Q9NQE9  [64]  

Histone H1.2  HIST1H1C  (H1F2)  P16403  [64]  

Heterogenous nuclear ribonucleoprotein U  HNRNPU  (hnRNPU, SAFA, U21.1)  Q00839  [64]  

Heat shock cognate 71 kDa protein  HSPA8  (HSC70, HSP73, HSPA10)  P11142  [64]  

Stress-70 protein, mitochondrial  HSPA9  (GRP75, HSPA9B, mt-HSP70)  P38646  [64]  

Interleukin enhancer-binding factor 3  ILF3  (DRBF, MPHOSPH4, NF90)  Q12906  [64]  

Importin-7  IPO7  (RANBP7)  O95373  [64]  

Insulin receptor substrate 4  IRS4  (py160, pp160)  O14654  [64]  

BTB/POZ domain-containing protein KCTD5  KCTD5   Q9NXV2  [73]  

KH-type splicing regulatory protein  KHSRP  (FUBP2)  Q92945  [64]  

Kinesin 1 heavy chain  KIF5B   Q6P164  [64]  

Kinesin light chain 2  KLC2   Q9H0B6  [64]  

BC002942 protein  LMF2  (TMEM112B, TMEM153)  Q9BU23  [64]  
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(Table 1) contd….. 

Protein Name 
Gene Name/  

Abbreviation  
Alternative Names/ 

Abbreviations  
UniProt ID  Reference  

Lysozyme C precursor  LYZ  (LZM)  P61626  [64]  

DNA replication licensing factor MCM2 MCM2  (BM28, CCNL1, CDCL1, KIAA0030)  P49736  [64]  

DNA replication licensing factor MCM5  MCM5  (CDC46)  P33992  [64]  

DNA replication licensing factor MCM6  MCM6  (p105MCM)  Q14566  [64]  

DNA replication licensing factor MCM7  MCM7  (CDC47)  P33993  [64]  

Myosin light polypeptide 6  MYL6  (MYL6, LC17, MLC3)  P60660  [64]  

Nibrin  NBN  (NBS1, P95)  O60934  [66]  

Nucleolin  NCL   P19338  [64]  

Nucleophosmin  NPM1  (Nucleolar phosphoprotein B23)  P06748  [64],[70]  

Nucleoporin 85  NUP85  (NUP75, PCNT1)  Q9BW27  [64]  

Poly-[ADP-ribose] polymerase 1  PARP1  (ADPRT, PPOL)  P09874  [64]  

Proliferating cell nuclear antigen  PCNA   P12004  [64]  

Prohibitin-2  PHB2  (BAP, REA)  Q99623  [64]  

DNA polymerase delta catalytic subunit  POLD1   P28340  [64]  

Protein phosphatase 1 regulatory subunit 26  PPP1R26  (KIAA0649)  Q5T8A7  [64]  

DNA-dependent protein kinase  PRKDC  (HYRC1, DNA-PKcs)  P78527  [64-66]  

U4/U6 small nuclear ribonucleoprotein Prp4  PRPF4   Q6IAP9  [64]  

26S protease regulatory subunit 7  PSMC2   Q75L23  [64]  

Proteasome non-ATPase regulatory subunit 2  PSMD2  (TRAP2)  Q13200  [64]  

DNA repair protein RAD50  RAD50   Q92878  [64]  

GTP-binding nuclear protein RAN  RAN  (ARA24)  P62826  [64]  

E3 SUMO-protein ligase RanBP2  RANBP2  (NUP358)  P49792  [64]  

Reticulocalbin-1 precursor  RCN1   Q15293  [64]  

Telomere-associated protein RIF1  RIF1   Q5UIP0  [64]  

Replication protein A 70 kDa DNA-binding subunit  RPA1  (REPA1, RPA70)  P27694  [64]  

32-kDa replication protein A  RPA2  (REPA2, RPA32, RPA34)  P15927  [64-65]  

60S ribosomal protein L11  RPL11   P62913  [64]  

60S ribosomal protein L13  RPL13  (BBC1)  P26373  [64]  

60S ribosomal protein L23  RPL23  (RPL23 A)  P62829  [64]  

60S ribosomal protein L7  RPL7  (RPL7 A)  P18124  [64]  

RPS4X protein  RPS4X   Q96IR1  [64]  

RPS9 protein  RPS9   A5D904  [64]  

RuvB-like 1  Ruvbl1  (INO80H, NMP238, TIP49, TIP49A)  Q9Y265  [64]  

Splicing factor 3B subunit 4  SF3B4  SAP49  Q15427  [64]  

Mitochondrial 2-oxoglutarate/malate carrier protein  SLC25A11  (SLC20A4, OGCP)  Q02978  [64]  

Phosphate carrier protein, mitochondrial  SLC25A3  (PHC, PTP)  Q00325  [64]  

SLC25A5 protein  SLC25A5  (SLC25A5)  Q6NVC0  [64]  

ADP/ATP translocase 3  SLC25A6  (ANT3)  P12236  [64]  

Structural maintenance of chromosomes protein 1A  SMC1A  (DXS423E, KIAA0178, SB1.8, SMC1, SMC1L1)  Q14683  [65]  

Structural maintenance of chromosome 2  SMC2  (CAPE, SMC2L1)  O95347  [64]  

SNW domain-containing protein 1  SNW1   Q0D2M5  [64]  
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 Besides the MCM complex and the processive complex 
(containing PCNA and DNA polymerase), several other 
proteins are found in the cellular replisome complex 
including Claspin, And1, and RFC [84]. A combination of 
PCNA, POLD1, the helicase complex MCM, and RFC, 
together with AAV2 Rep have been shown to be required 
and sufficient to reconstitute efficient AAV2 DNA 
replication in an in vitro replication system [77,78] and all of 
these proteins were also found in both Ad and HSV-1 
supported AAV2 RCs, except for RFC, which was found in 
AAV2 RCs only in cells coinfected with HSV-1. Rep78 and 
Rep 68 proteins have been shown to have site-specific DNA 
helicase and endonuclease activities required to carry out 
both terminal resolution and reinitiation in an in vitro assay 
[85-87]. Although AAV2 encodes its own helicase provided 
by Rep, the cellular helicase complex MCM seems to play a 
central role in AAV2 replication and may not only be  
 

 

involved in formation of the pre-initiation complex. Nash  
et al. suggested that a complex composed of Rep and MCM 
might bind to the 5  hairpin after reinitiation of the ITR and 
unwind the displaced strand from the template, while POLD-
PCNA extends the 3  primer on the template strand [64]. 
Similar to eukaryotic DNA replication [84], the resulting ss 
DNA loop of the displaced strand may become coated with 
the host ss DNA binding protein RPA (composed of the 
subunits RPA70, RPA32, and RPA14), which is also found 
in both Ad and HSV-1 supported AAV2 RCs (Tables 1 and 
2, Fig. 3). However, the observed phosphorylation in 
infected cells might change the function of RPA32 from 
DNA replication protein towards DNA damage signaling 
protein (discussed in more detail below). Premature 
activation of the DNA replication complex in G1 phase of 
the cell cycle has been shown to be regulated by binding of 
retinoblastoma protein (Rb) or prohibitin to MCM proteins  
 

(Table 1) contd….. 

Protein Name  
Gene Name/  

Abbreviation  
Alternative Names/ 

Abbreviations  
UniProt ID  Reference  

Transcription factor Sp1  SP1  (TSFP1)  P08047  [71]  

Spectrin  chain, brain 2  SPTBN2   A4QPE4  [64]  

Splicing coactivator subunit SRm300  SRRM2   Q05BI2  [64]  

Splicing factor, arginine/serine-rich 1  SRSF1  (ASF, SF2, SF2P33)  Q07955  [64]  

Splicing factor, arginine/serine-rich 2  SRSF2   Q01130  [64]  

Splicing factor, arginine/serine-rich 4  SRSF4  (SRP75)  Q08170  [64]  

Lupus La protein  SSB   P05455  [64]  

Stomatin-like protein 2, mitochondrial  STOML2  (SLP2)  Q9UJZ1  [64]  

RNA polymerase II coactivator p15 (PC4)  SUB1  (PC4, RPO2TC1)  P53999  [64]  

Arginine/serine-rich-splicing factor 14  SUGP2  (KIAA0365, SFRS14)  Q8IX01  [64]  

Transcription elongation factor SPT6  SUPT6H  (KIAA0162, SPT6H)  Q7KZ85  [64]  

p53  TP53  (p53)  P04637  [72]  

Transcription intermediary factor 1-   TRIM24  (RNF82, TIF1, TIF1A)  O15164  [64]  

Elongation factor Tu, mitochondrial  TUFM  (P43, EFTU )  P49411  [64]  

Splicing factor U2AF 35-kDa subunit  U2AF1  (U2AF35, U2AFBP)  Q01081  [64]  

Ubiquitin-activating enzyme E1  UBA1  (A1S9T, UBE1)  P22314  [64]  

Ubiquitin-protein ligase EDD1  UBR5  (EDD, EDD1, HYD, KIAA0896)  O95071  [64]  

U3 snRNA-associated protein 14 A  UTP14A  (SDCCAG16)  Q9BVJ6  [64]  

Voltage-dependent anion channel protein 2  VDAC2  (VDAC2)  P45880  [64]  

Wolframin  WFS1  (WFS1)  O76024  [64]  

X-ray repair cross-complementing protein 5  XRCC5  (G22P2, CTC85, CTCBF, Ku80, Ku86, TLAA)  P13010  [64-65]  

X-ray repair cross-complementing protein 6  XRCC6  (G22P1, CTC75, CTCBF, TLAA, Ku70)  P12956  [64-65]  

Nuclease sensitive element-binding protein 1  YBX1   Q6PKI6  [64]  

14-3-3 Protein   YWHAE   P62258  [64]  

14-3-3 Protein   YWHAQ   P27348  [64]  

14-3-3 Protein /   YWHAZ   P63104  [64]  

Zinc finger CCHC domain-containing protein 3  ZCCHC3   Q3B7J3  [64]  

Bold: Abbreviation used in the text.  

Red: Similar or homologous cellular proteins identified in Rep78-associated complexes in both Ad and HSV-1 supported AAV2 replication. 
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 [88,89]. Dissociation of prohibitin from MCM is suggested 
to be regulated by cell cycle regulated kinases and licenses 
DNA replication in S phase of the cell cycle [89]. Prohibitin 
(both, PHB and PHB2) was found associated with Rep in 
both Ad and HSV-1 supported AAV2 replication (Tables 1 
and 2, Fig. 3; [64,68]). Prohibitin may have an inhibitory 
effect on regulation of AAV2 DNA replication; however, a 
direct impact has not yet been investigated. In addition to its 
role in preventing the activity of replisomes [89], prohibitin 
might also be involved in transcriptional regulation of viral 
genes (see below). Cyclin-dependent kinases (CDKs) and 
germinin are other MCM inhibitors [90]. Binding of both 
proteins results in the displacement of MCM from replicated 
DNA at fork termination in late S-phase and prevents  
re-replication of the cellular genome [90]. In cells coinfected 
with AAV2 and HSV-1, germinin was found recruited to 
AAV2 RCs (Table 2, Fig. 2; R. Vogel unpublished data). It 
is possible that a spatial and/or temporal regulation of the 
activity of the MCM complex by several regulators, 
including prohibitin and germinin, might also play a central 
role in the AAV2 life cycle. Spatial or temporal inhibition of 
AAV2 DNA replication within AAV2 RCs may be 
important to promote vast transcription of AAV2 genes from 
ds replication intermediates. 

 Immunofluorescence analysis revealed a more even 
distribution of MCM in the nucleus of cells coinfected with 
AAV2 and HSV-1 although it was also associated with Rep 
to a certain degree [68]. Similarly, besides significant 
overlap with Ad supported AAV2 RCs, MCM5 and MCM7 
were also detected outside of AAV2 RCs [64]. It is 
suggested that during HSV-1-induced AAV2 DNA 
replication Ku proteins may substitute for MCM function in 
strand displacement activity [68], similar to their partial 
substitution of MCM in an in vitro AAV2 replication assay 
[64]. In addition, the essential HSV-1 helicase primase 
complex (UL5/8/52) is proposed to substitute for helicase 
activity of MCM upon strand displacement [68]. However, 
dislocation of MCM from AAV2 RCs might also be a 
consequence of a complex spatial and/or temporal regulation 
which might influence AAV2 DNA replication in coinfected 
cells. 

The Role of Cellular DNA Damage Sensing and Repair 
Proteins in AAV2 DNA Replication 

 It is likely that the structure of incoming viral DNA as 
well as viral replication intermediates play a central role in 
the recruitment of cellular proteins into viral replication 
compartments. Both incoming Ad and HSV-1 DNA are  
 

 

Fig. (2). Cellular proteins associated with HSV-1 supported AAV2 RCs. The String database (http://string-db.org/) was used to reconstitute 

the interaction networks between identified cellular proteins (as described in Figure 1) associated with HSV-1 supported AAV2 RCs and/or 

the AAV2 Rep78 protein. Four functional categories, mRNA processing (blue), DNA replication (red), transcription (yellow), and DNA 

damage sensing and repair (green) are highlighted. 
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Table 2. Proteins Identified in Rep78-Associated Complexes and/or AAV2 RCs during HSV-1 Supported AAV2 Replication 

 

Protein Name 
Gene Name  

(Abbreviation)  
Alternative Names  UniProt ID  Reference  

Serine-protein kinase ATM  ATM  (A-T mutated)  Q13315  [67]  

Ataxia telangiectasia and Rad3-related protein  ATR  (FRP1)  Q13535  [67]  

ATP-binding cassette sub-family E member 1  ABCE1  (RLI, RNASEL1, RNASELI, RNS4I, OK/SW-cl.40)  P61221  [68]  

Acyl-CoA dehydrogenase family member 9, 
mitochondrial  

ACAD9   Q9H845  [68]  

Annexin A5  ANXA5  (ANX5, ENX2, PP4)  P08758  [68]  

ADP-ribosylation factor-like protein 8B  ARL8B  (ARL10C, GIE1)  Q9NVJ2  [68]  

ATP synthase subunit O, mitochondrial  ATP5O  (ATPO, OSCP)  P48047  [68]  

Serine/threonine-protein kinase Chk2  CHEK2  (CDS1, Chk2, RAD53)  O96017  [67]  

Calcium-binding mitochondrial carrier protein 
Aralar1  

SLC25A12  (CMC1, ARALAR1) O75746  [68]  

Probable ATP-dependent RNA helicase DDX17  DDX17  
(DEAD box protein p72, 17, RNA-dependent helicase 

p72)  
Q92841  [68]  

Elongation factor 1-alpha 1  EEF1A1  (EF1A, LENG7)  P68104  [68]  

Protein flightless-1 homolog  FLII  (FLIL)  Q13045  [68]  

Germinin  GMNN   O75496 
Vogel 

unpublished data 

Histone H2A.x  H2AFX  (H2AX, H2a/x)  P16104  [67]  

Liver histone H1e   (H1E) A3R0T7  [68]  

Histone H4  HIST1H4A  (H4FA)  P62805  [68]  

Heterogeneous nuclear ribonucleoprotein A3  HNRNPA3  (hnRNPA3)  P51991  [68]  

Heterogeneous nuclear ribonucleoprotein A/B  HNRNPAB  (hnRNPAB)  Q53F64  [68]  

Heterogeneous nuclear ribonucleoproteins C1/C2  HNRNPC  (hnRNPC)  P07910  [68]  

Heterogeneous nuclear ribonucleoprotein D0  HNRNPD  (AUF1, hnRNP D)  Q14103  [68]  

Heterogeneous nuclear ribonucleoprotein H  HNRNPH1  (hnRPH1)  P31943  [68]  

Heterogeneous nuclear ribonucleoprotein M  HNRNPM  (hnRPM, NAGR1)  P52272  [68]  

Heat shock cognate 71 kDa protein  HSPA8  (HSC70, HSP73, HSPA10)  P11142  [68]  

Keratin, type I cytoskeletal 13  KRT13   A8K2H9  [68]  

Prelamin-A/C (Lamin-A/C)  LMNA  (LMN1)  P02545  [68]  

Lamin-B1  LMNB1  (LMN2, LMNB)  P20700  [68]  

Lamin-B2  LMNB2  (LMN2)  Q03252  [68]  

LIM domain only protein 7  LMO7  (FBX20,FBXO20, KIAA0858)  Q8WWI1  [68]  

DNA replication licensing factor MCM7  MCM7  (CDC47)  P33993  [68]  

Myosin phosphatase Rho-interacting protein  MPRIP  KIAA0864, MRIP, RHOIP3  Q6WCQ1  [68]  

Double-strand break repair protein MRE11A  MRE11A  (HNGS1, MRE11)  P49959  [68]  

DNA mismatch repair protein Msh2  MSH2  (MSH2)  P43246  [68]  

DNA mismatch repair protein Msh3  MSH3  (DUC1, DUG, MRP1)  P20585  [68]  

DNA mismatch repair protein Msh6  MSH6  (GTBP, p160)  P52701  [68]  

Myosin-10  MYH10   P35580  [68]  

Myosin regulatory light chain 12A  MYL12A  (MLCB, MRLC3, RLC)  P19105  [68]  

Myosin regulatory light chain 12B  MYL12B  (MRLC2, MYLC2B)  O14950  [68]  

Myosin light chain kinase 2, skeletal/cardiac 
muscle  

MYLK2   Q9H1R3  [68]  
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linear ds molecules that seem to elicit an immediate DDR 
after entry into the nucleus [91-95]. The incoming AAV2 
DNA is of ss nature, with a complex secondary structure. 
Therefore, it is not surprising that besides RPA several other 
ssDNA binding proteins including SSBP1, NPM1, RuvBL, 
and hnRNPU (Tables 1 and 2, Figs. 1, 2) were found 
associated with AAV2 RCs (discussed in more detail below). 

In addition, in absence of a helper virus, AAV2 DNA has 
been shown to elicit a DDR mediated by ATR [82], which is 
characteristic of the presence of ss DNA ends [96]. 

 There is rising evidence that besides cellular replication 
factors, also proteins of the DNA sensing and repair 
machinery play central roles in replication of DNA viruses 
[91-95]. Three studies have intensively investigated DDR 

(Table 2) cond…… 

Protein Name 
Gene Name  

(Abbreviation)  
Alternative Names  UniProt ID  Reference  

Nibrin  NBN  (NBS1, P95)  O60934  [67-68]  

Nuclear pore complex protein Nup153  NUP153   P49790  [68]  

Poly [ADP-ribose] polymerase 1  PARP1  (ADPRT, PPOL)  P09874  [68]  

Proliferating cell nuclear antigen  PCNA   P12004  [68]  

Prohibitin  PHB   P35232  [68]  

D-3-phosphoglycerate dehydrogenase  PHGDH  (PGDH3)  O43175  [68]  

DNA polymerase delta catalytic subunit  POLD1   P28340  [68]  

DNA-dependent protein kinase catalytic subunit  PRKDC  (HYRC, HYRC1, DNA-PKcs)  P78527  [67]  

DNA repair protein RAD50  RAD50   Q92878  [68]  

RNA-binding protein 14  RBM14  (SIP)  Q96PK6  [68]  

Replication factor C subunit 2  RFC2  (RFC40)  P35250  [68]  

Replication factor C subunit 3  RFC3   P40938  [68]  

Replication protein A 70 kDa DNA-binding 
subunit  

RPA1  (REPA1, RPA70)  P27694  [68]  

Replication protein A 32 kDa subunit  RPA2  (REPA2, RPA32, RPA34)  P15927  [67-68]  

60S ribosomal protein L11  RPL11   P62913  [68]  

60S ribosomal protein L13  RPL13  (BBC1 OK/SW-cl.46)  P26373  [68]  

40S ribosomal protein S10  RPS10   P46783  [68]  

40S ribosomal protein S18  RPS18   P62269  [68]  

RPS4X protein  RPS4X   P62701  [68]  

RuvB-like 2  Ruvbl2  (INO80J, TIP48, TIP49B, CGI-46)  Q9Y230  [68]  

Splicing factor, proline- and glutamine-rich  SFPQ  (hPOMp100, SFP)  P23246  [68]  

ADP/ATP translocase 3  SLC25A6  (ANT3, CDABP0051, ADT3)  P12236  [68]  

Structural maintenance of chromosomes protein 
1A  

SMC1A  (DXS423E, KIAA0178, SB1.8, SMC1, SMC1L1)  Q14683  [68]  

Spectrin alpha chain, non-erythrocytic 1  SPTAN1  (NEAS, SPTA2)  Q13813  [68]  

Spectrin beta chain, non-erythrocytic 1  SPTBN1  (SPTB2)  Q01082  [68]  

Single-stranded DNA-binding protein, 
mitochondrial  

SSBP1  (PWP1-interacting protein 17, Mt-SSB)  Q04837  [68]  

p53  TP53  (p53)  P04637  [67]  

Tropomodulin-3  TMOD3   Q9NYL9  [68]  

Class IVb beta tubulin    Q8IWP6  [68]  

Elongation factor Tu, mitochondrial  TUFM  (EF-Tu, P43)  P49411  [68]  

Vimentin  VIM   P08670  [68]  

X-ray repair cross-complementing protein 5  XRCC5  (G22P2, CTC85, CTCBF, Ku80, Ku86, TLAA)  P13010  [67-68]  

X-ray repair cross-complementing protein 6  XRCC6  (G22P1, CTC75, CTCBF, TLAA, Ku70)  P12956  [67-68]  

Bold: Abbreviation used in the text.  

Red: Similar or homologous cellular proteins identified in Rep78-associated complexes in both Ad and HSV-1 supported AAV2 replication. 
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factors of Ad or HSV-1 supported AAV2 RCs [65-67].  
The main kinase, required for activation of a robust  
DNA-damage response in AAV2 and Ad coinfected cells has 
been shown to be DNA-PK [65,66]. In cells coinfected with 
AAV2 and HSV-1, both ATM and DNA-PK seem to 
mediate signaling to downstream targets including p53 and 
Chk2, while signaling to RPA32 appears to be mediated by 
DNA-PK alone [67]. The DNA-PK complex colocalized 
with both HSV-1 and Ad supported AAV2 RCs [65,67], 
however, late upon coinfection with HSV-1, DNA-PKcs was 
degraded [67]. This might be the reason why DNA-PK was 
not found associated with AAV2 Rep protein in co-IP 
experiments [68]. Not only the AAV2 genome structure with 
its cis-acting replication element CARE, the ITRs, and the 
single-stranded nature, but also the AAV2 Rep proteins have 
been shown to evoke a cellular DDR and a cell cycle arrest 
in S phase [97,98]. The interference of AAV2 with the 
cellular DDR and repair machinery may not only allow 

control of cell cycle progression, but also promote second-
strand synthesis of the AAV2 genome [74,99]. Cells exposed 
to a variety of genotoxic agents (e.g. HU or IR) have been 
shown to support significant helper-independent AAV2 rep 
expression and even DNA replication, although at very low 
levels [100-103]. 

 Proteins of the DDR and repair machinery also influence 
rAAV2 vector fate [104-112]. It is suggested that the T-
shaped hairpin structure within the AAV ITR and/or ss 
DNA-ds DNA junctions in the stem of the hairpin, may 
recruit DNA repair factors of the homologous recombination 
machinery [113]. While some proteins promote the 
formation of stable ds rAAV2 genomes, others decrease 
rAAV2 vector transduction efficiency [104-112]. In addition, 
genotoxic treatment has been shown to affect also integration 
rates or rAAV2 genomes; although these events occur at 
very low frequencies due to the absence of AAV2 rep 
expression [114,115]. 

 

Fig. (3). Cellular proteins and homologous proteins found in both Ad and HSV-1 supported AAV2 RCs. The String database (http://string-

db.org/) was used to reconstitute the interaction networks between identified cellular proteins or homologous proteins (as described in Fig. 1) 

which were found associated with both Ad and HSV-1 supported AAV2 RCs and/or the AAV2 Rep78 protein. Three functional categories, 

DNA replication (red), transcription (yellow), and DNA damage sensing and repair (green) are highlighted. 
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 Not only in absence of a helper virus, but also upon 
helper virus supported AAV2 replication, the accumulation 
of AAV2 replication intermediates harboring a covalently 
closed hairpin and a free DNA end is very likely to further 
activate and attract cellular components of the DDR 
signaling and repair machinery. Therefore, it is conceivably 
that the composition of cellular proteins in AAV2 RCs may 
change, depending on the prevalent structure of the AAV2 
DNA during infection and replication. 

The Role of the MRN Complex (and its Components) in 
AAV2 DNA Replication 

 Proteins of the MRN complex (composed of MRE11, 
NBS1, and RAD50) are among the first to appear at the site 
of DNA lesion [116]. MRN mediates downstream signaling 
to key proteins involved in sensing, signaling, and effector 
responses to DNA ds breaks [116]. In absence of a helper 
virus, the MRN complex has been shown to be recruited also 
to incoming AAV2 DNA [82,104,107]. The consequence of 
this recruitment on recombinant AAV2 transduction is still 
under debate. 

 An inhibitory effect of the MRN complex on 
transduction efficiency of recombinant AAV2 vectors due to 
binding of the MRN complex to AAV-ITRs has previously 
been reported [1,104,106,107,117]. However, upon infection 
with self-complementary recombinant AAV2 (scAAV) 
vectors, the MRE11 and NBS1 proteins of the MRN 
complex have been shown to be required for the formation of 
double-stranded circular episomes, the predominant form of 
AAV2 persisting in human tissue [107]. The MRN complex, 
although with opposite determination, is also a critical 
element for both helper viruses HSV-1 and Ad [118-125]. 
The interaction with MRN is one example how Ad and 
HSV-1 adopt very different ways to interfere with the host 
DDR. The disruption of the NHEJ machinery by 
E1b55K/E4orf6 mediated degradation of the MRN complex 
is absolutely required to prevent Ad genome 
concatemerization, which would prohibit viral genome 
packaging into virions [119,126,127]. In addition, Ad 
interference with these central elements of the DDR and 
repair system also prevents apoptosis during infection 
[118,119,128]. In contrast, the MRN complex is required for 
full activation of the ATM-mediated DDR pathway, which is 
suggested to support recombination dependent HSV-1 
replication and the formation and stabilization of HSV-1 
DNA concatemers and complex branched replication 
products [124,125]. Interestingly, in Ad supported AAV2 
replication, the function of MRN for AAV2 replication 
seems to be linked to its effect on the helper virus. Ad 
mediated inhibition of the MRN complex has been shown to 
support AAV2 replication [117], and only the RAD50 and 
the NBS1 proteins of the MRN complex were detected in Ad 
supported AAV2 RCs (Table 1, Fig. 1). In contrast, all 
components of the MRN complex (NBS1, MRE11, and 
RAD50) were found recruited to HSV-1 supported AAV2 
RCs (Table 2, Fig. 2; [67,68]) and so far, there is no 
indication of an inhibitory effect of the MRN complex on 
HSV-1 supported AAV2 replication. It is suggested that the 
utilization of the HSV-1 polymerase for AAV2 replication 
may bypass the inhibitory effects of MRN on second-strand 
synthesis and replication of AAV2 DNA under these helper 
virus conditions [117]. It remains to be investigated whether 

the MRN complex may even enhance HSV-1 supported 
AAV2 replication, as it enhances HSV-1 replication 
[124,125]. 

 Independent of its function in the MRN complex, 
phosphorylated NBS1 is involved in the activation of the S-
phase checkpoint [129]. In cells coinfected with AAV2 and 
HSV-1, abundant NBS1 was localized to AAV2 RCs [67], 
and it may be involved in the induction of a cell cycle arrest 
in these cells. Although NBS1 levels decrease with the onset 
of infection [66], a potential role in S-phase checkpoint 
activation remains to be determined in cells coinfected with 
AAV2 and Ad as the helpervirus. 

 In contrast to cells coinfected with AAV2 and Ad, but in 
line with the observed inhibitory effect of the MRN complex 
on rAAV2 vector transduction, cells deficient in the MRN 
target ATM, exhibit increased rAAV2 transduction 
efficiency [1]. It is suggested that ATM inhibits single-to 
double-strand conversion of rAAV2 vectors [1]. 

The Role of DDR Signaling via ATM and DNA-PK in 
AAV2 DNA Replication 

 Although the MRN complex is not functional in cells 
coinfected with AAV2 and Ad, ATM and DNA-PK, two 
main kinases in DDR [130] mediate downstream signaling to 
SMC1, Chk1, Chk2, H2AX, XRCC4, and RPA [65,66]. 
While H2AX, ATM and SMC1 were found in a pan-nuclear 
pattern, DNA-PK (DNA-PKcs, Ku70, and Ku86) and 
RPA32 accumulate within Ad supported AAV2 RCs (Table 
1, Fig. 1; [65,66]). ATM, DNA-PKcs, Chk2, RPA32 and 
H2AX are phosphorylated and all but H2AX are recruited to 
HSV-1 supported AAV2 RCs (Table 2, Fig. 2; [67,68]). 
Since all proteins of the MRN complex are also associated 
with HSV-1 supported AAV2 RCs, it is not clear whether 
activation of ATM and DNA-PK signaling in these cells 
requires a functional MRN complex or not. Although the 
significance of DNA-PK in the AAV2 lytic cycle remains 
unclear, the activation of the ATM pathway appears to be 
beneficial for Ad supported AAV2 genome replication [66]. 
ATM signaling in cells coinfected with AAV2 and Ad may 
affect SMC1 and SMC2, two central components of 
condensin and cohesion complexes [131], which were found 
to be associated with Rep proteins in HSV-1 and Ad 
supported AAV2 replication (Tables 1 and 2, Fig. 3). Both 
proteins possess DNA ATPase activity and are required for 
the correct segregation of replicated chromosomes and many 
other events linked to chromatin dynamics and regulation of 
gene expression [131]. In addition, the cohesin complex 
works as a downstream effector in the ATM mediated DDR 
to control the S-phase checkpoint [132]. It is possible that 
these factors have also multiple functions in the AAV2 life 
cycle including checkpoint activation and viral gene 
expression. 

 Both ATM and DNA-PK are phosphatidylinositol  
3-kinase-related kinases which possess serine/threonine 
kinase function [133]. 14-3-3 proteins (YWHA) bind to 
ATM and DNA-PK targets containing phospho-serine or 
phospho-threonine groups and regulate the function of these 
proteins implicated for example in cell cycle progression or 
apoptosis [134]. 14-3-3 proteins , , and /  were found 
associated with Rep proteins in cells coinfected with AAV2 
and Ad (Table 1, Fig. 1). Although interaction of viral 



110    The Open Virology Journal, 2013, Volume 7 Vogel et al. 

proteins with 14-3-3 proteins has been described for different  
viruses [135,136], it has not yet been described for HSV-1 or 
Ad. It is possible that the interaction of AAV2 Rep with 14-
3-3 proteins in cells coinfected with Ad is part of the AAV2 
mediated hijacking of cellular factors and might influence 
cell cycle regulation and/or apoptosis in coinfected cells. 

The Multifunctional RPA Protein and AAV2 Replication 

 An important downstream target of the DDR is the 
cellular ss DNA binding protein RPA [137]. Besides its role 
in DNA replication, RPA is essential also for DNA 
recombination and repair processes [138]. In this case, the N-
terminus of the 32-kDa subunit of human RPA becomes 
hyperphosphorylated by kinases of the cellular DDR (e.g. 
DNA-PK; [138]), which is suggested to cause a change in 
RPA conformation that down-regulates activity in DNA 
replication but does not affect DNA repair processes [138]. 
RPA was found in both, Ad and HSV-1 supported AAV2 
RCs (Tables 1 and 2, Fig. 3) and DNA-PK-dependent 
phosphorylation of RPA32 has been observed also during 
both Ad and HSV-1 supported AAV2 replication [65-67]. It 
is not clear if non-phosphorylated and phosphorylated RPA 
coexist in AAV2 RCs. But it is possible that temporal 
phosphorylation of RPA may occur upon AAV2 replication 
which might influence its function. It is tempting to 
speculate that in contrast to non-phosphorylated RPA, 
phosphorylated RPA can participate in DDR signaling upon 
AAV2 replication and not directly promote the process of 
AAV2 strand displacement replication in vivo [77]. A similar 
phenomenon has been observed in cells infected with SV40 
[139]. Although RPA maintained SV40 DNA replication in 
vitro, it has not been found to be involved in replication of 
SV40 DNA in vivo; more precisely, RPA is phosphorylated 
in vivo and therefore not able to localize to SV40 RCs [139]. 

Non-Homologous End Joining (NHEJ) and Homologous 
Recombination (HR) 

 While components of the non-homologous end joining 
(NHEJ) machinery have been shown to have both inhibitory 
(e.g. Ku70; [140]) and supportive (e.g. DNA 
ligaseIV/XRCC4; [141]) effects on HSV-1 replication, 
NHEJ proteins are not beneficial for Ad infection in general 
[118,119,126-128]. The impact of NHEJ proteins on AAV2 
replication is less well understood. Besides the MRN 
complex and LigaseIV/XRCC4, the central element in NHEJ 
is the DNA-PK complex [130]. In both, Ad and HSV-1 
supported AAV2 replication, DNA-PK was activated and 
recruited into AAV2 RCs (Tables 1 and 2, Fig. 3 [65,67]). In 
addition, signaling to XRCC4 was observed when Ad was 
the helpervirus [65]. It is suggested that DNA-PK induces 
the phosphorylation of histone 1 (H1) at DNA ds breaks in 
order to reduce its affinity for DNA and thereby support 
access of DNA ligaseIV/XRCC4 to broken DNA ends [142]. 
Histone 1 (H1F2 or H1E) was also detected associated with 
both Ad and HSV-1 supported AAV2 RCs (Tables 1 and 2, 
Fig. 3) and may therefore be involved in regulating the 
access of DNA repair factors to AAV2 DNA. However, 
another report showed that not the catalytic subunit (cs) of 
DNA-PK, but Ku70 and Ku80 are required to recruit 
ligaseIV/XRCC4 to sites of ds breaks and promote end-
joining events [143]. It has been shown that Ku proteins 
directly interact with the AAV2 ITR hairpins [111]. 

Therefore, both Ku binding to AAV2 DNA [111] as well as 
the association of DNA-PKcs with Rep78 [64,144] may 
recruit the DNA-PK complex to AAV2 RCs. However, the 
role of DNA-PK and other factors of the NHEJ machinery in 
AAV2 replication is still under debate. In one report, rAAV2 
replication in the presence of HSV-1 or Ad helper functions 
has been shown to be decreased in absence of DNA-PK 
[111] while another report showed enhanced wtAAV2 
genome replication in absence of DNA-PK activity when Ad 
was used as the helper virus [66]. In the latter case, it has 
been suggested that loss of DNA-PK could lead to reduced 
circularization of the AAV2 genome which might promote 
AAV2 DNA replication events [66]. Indeed, DNA-PK has 
been shown to support the formation of stable ds rAAV2 
vector genomes including circular monomers and 
concatemers [108,112]. Besides DNA-PKcs, the following 
repair proteins have been shown to also support rAAV2 
recombination events: the MRN complex, ATM, Artemis, 
BLM, and WRN [105-110,112]. There is evidence that the 
hairpins at AAV-ITRs are targeted by the cellular DNA 
repair machinery, including DNA-PK [111] and Artemis 
[109] similar to DNA hairpin structures in mammalian cells 
emerging during the V(D)J recombination or NHEJ [145]; 
this may support viral genome recombination [109], self-
circularization [108,112], concatemerization [146], and 
genomic integration [3] of the rAAV2 genomes. The impact 
of these proteins on helper virus supported AAV2 replication 
is not clear. Artemis and ATM are involved in both HR and 
NHEJ events, depending on the cell-cycle phase [147]. 
While ATM was found associated with both Ad and HSV-1 
supported AAV2 replication (see above, Tables 1 and 2,  
Fig. 3), Artemis as well as BLM and WRN, two proteins of 
the RecQ helicases complex involved in HR events and 
stabilization of replicating DNA [148], were not found 
associated with AAV2 RCs. This is consistent with Ad 
infection, where BLM is degraded [149], but in contrast to 
HSV-1 infection, where BML is recruited into viral RCs 
[140]. 

 Independent of its role in NHEJ events, there is 
preliminary evidence that DNA-PKcs may mediate also 
modification of the large Rep proteins upon AAV2 and Ad 
coinfection [66]. The group of J.P. Trempe showed that 
phosphorylation of the AAV2 Rep proteins alters their 
interactions with the AAV2 ITRs [150]; thus DNA-PK may 
play an essential role in regulating Rep mediated processes 
of viral DNA replication [65,66], including terminal 
resolution. 

The Role of NHEJ in AAV2 Integration Events 

 Although the data is inconsistent, the NHEJ pathway 
seems to influence AAV2 integration events. In cell culture 
experiments, DNA-PKcs has been shown to enhance 
integration of both ss rAAV2 and ds rAAV2 vectors [106]. 
Another report showed that the NHEJ factor ligase IV in 
particular supports integration of incoming ss AAV2 vector 
genomes [151]. Another factor implicated in V(D)J 
recombination events is the high mobility group protein 1 
(HMG1; [152]). Although not identified in presence of Ad 
and HSV-1, this protein has been shown to bind to Rep78 
and enhance RBS binding and nicking activities of Rep as 
well as site-specific integration of the AAV2 genome in 
absence of a helper virus [153]. Although these data suggest 
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a positive influence of NHEJ mechanisms on AAV2 
integration in cell culture, rAAV2 genome integration has 
been shown to be strongly enhanced in DNA-PKcs-deficient 
SCID mice [154]. 

The ATR Pathway 

 The MRN complex and BLM as well as several factors 
of the ATR dependent DDR including ATR, TopBP1, Brca1, 
Rad17, RPA, Chk1, and Rad51 have been found recruited to 
AAV2 DNA in absence of a helper virus [82,104]. The 
group of P. Beard showed that ATR, Chk1, and BML are 
involved in an AAV2 DNA induced cell cycle arrest in G2 
phase, likely by mimicking an aberrant cellular DNA 
replication fork [82]. Besides the MRN complex, RPA, and 
ATR, none of the other proteins (BLM, TopBP1, Brca1, 
Rad17, and Rad51) recruited to AAV2 DNA in absence of a 
helper virus were found associated with helper virus 
supported AAV2 RCs. Moreover, for both helper viruses, 
Ad5 and HSV-1, it has been shown that ATR signaling via 
Chk1 is inhibited in infected cells [67,118,155]. However, 
factors of the ATR pathway might still have an impact on 
viral replication, as it has been shown that ATR, RPA, 
TopBP1, clapsin, and CINP play a beneficial role in HSV-1 
gene expression and virus production even in absence of 
ATR kinase activity [155,156]. The absence and/or 
obstruction of several proteins of the ATR pathway in 
presence of a helper virus implies the extensive influence of 
the helper virus on the cellular environment to promote 
AAV2 replication. 

PARP 

 Another multifunctional cellular repair protein found 
associated with AAV2 RCs in presence of both Ad and 
HSV-1 is poly(ADP-ribose) polymerase-1 (PARP-1). This 
nuclear enzyme mediates poly-ADP-ribosylation 
(PARylation) of cellular proteins involved in several 
different processes including replication, recombination, 
repair, and cell death [157]. The addition of poly-ADP-
ribosyl polymers is implicated in the recruitment of DNA 
damage repair factors to sites of single- and double-strand 
breaks [157]. In addition, PARP supports DNA stability by 
protecting DNA ends from nucleases [157]. A recent report 
showed that upon HSV-1 infection, PARP1/2 is involved in 
increasing total protein PARylation levels [158], which may 
occur in the context of DDR activation by HSV-1 [158]. 
There is one report, showing that the HSV-1 ICP4 protein is 
PARylated upon infection [159]; however, which effect this 
modification as well as the overall upregulation of protein 
PARylation has on HSV-1 infection remains to be 
investigated. Due to its presence in both Ad and HSV-1 
supported AAV2 RCs (Tables 1 and 2, Fig. 3), it is very 
likely that PARP might also affect the function of viral 
proteins and/or cellular repair and replication factors in 
AAV2 RCs. In addition, PARP-1 may also be involved in 
the integration of the AAV2 genome into the host 
chromosome, similar to its role in HIV integration [160]. 

RUVBL1 and RUVBL2 

 The RuvB-like proteins (RUVBL1 and RUVBL2), also 
termed pontin and reptin, are members of the family of 
ATPases and are associated with diverse cellular activities 
including regulation of cell proliferation, apoptosis,  

transcription and DNA repair [161]. Both, pontin and reptin 
were found associated with Ad and HSV-1 supported AAV2 
RCs (Tables 1 and 2, Fig. 3). In AAV2 replication, these 
proteins may be exploited to regulate cell cycle progression 
or apoptosis. In addition, similar to the AAV2 Rep proteins 
[75], pontin and reptin both possess ATPase and helicase 
activity [161] which might also support AAV2 DNA 
replication. 

NUP85 and NUP153 

 The roles of nucleoporins in DNA repair are less well 
described. Two nucleoporins were found associated with 
AAV2 RCs, NUP85 and NUP153 (Tables 1 and 2, Fig. 3). In 
yeast, nucleoporins have been shown to be involved in 
sequestration of active sites of DNA repair to the nuclear 
periphery [162,163]. In human cells, there is evidence that 
NUP153 is essential for proper activation of the DNA 
damage checkpoints and that it promotes NHEJ over HR 
events [164]. NUP153 may also be involved in supporting 
NHEJ events in AAV2 infection. In addition, it is tempting 
to speculate that similar to their role in spatial organization 
of DNA repair centers in yeast [162,163], nucleoporins may 
play a role in spatial organization of AAV2 replication 
compartments. 

Mismatch Repair Proteins 

 Another group of DNA repair proteins found in HSV-1 
supported AAV2 RCs belong to the family of mismatch 
repair (MMR) factors. In general, MMR factors are required 
to maintain DNA integrity [165]. These proteins are highly 
conserved from prokaryotes to humans and are involved in 
the recognition of DNA loop or base-base mismatches, 
resulting from insertion/deletion or DNA polymerase 
proofreading errors, respectively [165]. Two mismatch repair 
complexes composed of MSH2 and 3 (MutS ), and MSH2 
and 6 (MutS ) are involved in the recognition of DNA 
mismatches. MMR factors are also involved in DDR 
signaling and the control of HR [165]. Similar to HSV-1 
infected cells, where MSH2 and 6 have been found 
associated with the HSV-1 ICP8 protein [140], AAV2 Rep 
was found associated with MSH2, MSH3, and MSH6 (Table 
2, Fig. 2; [68]) and the localization of these proteins to HSV-
1 supported AAV2 RCs was confirmed by 
immunofluorescence experiments [68]. It is possible that 
MSH proteins localize only to HSV-1 but not to Ad 
supported AAV2 RCs because they bind to the HSV-1 ICP8 
protein, which has been shown to both interact with MSH 
proteins [140] and localize to AAV2 RCs in coinfected cells 
[68]. Upon HSV-1 infection, MMR proteins have been 
shown to be not only recruited to viral RCs, but also to be 
required for efficient HSV-1 replication [156]. It is 
suggested that besides their proofreading role in viral DNA 
replication, MMR proteins may play a role in IE gene 
expression prior to HSV-1 DNA replication [156]. The 
expression of HSV-1 IE genes is necessary to promote 
efficient AAV2 replication. In contrast, proteins of the 
cellular mismatch repair machinery have not been found 
associated with Ad RCs and do not seem to be involved in 
efficient virus replication, which may also explain their 
absence in AAV2 and Ad coinfection. The precise function 
of MMR proteins for HSV-1 supported AAV2 replication 
remains to be elucidated. 
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B23/Nucleophosmin 

 In addition to cellular proteins directly involved in DNA- 
RNA- or protein-metabolism, some unexpected cellular 
factors were found associated with AAV2 Rep proteins. For 
instance B23/nucleophosmin (NPM; Table 1, Fig. 1; 
[64,70]), which is a multifunctional protein involved in 
duplication of centrosomes [166,167] and protein shuttling 
[168]. Although it is unclear which of the several functions 
of NPM may be involved in AAV2 amplification, it has been 
shown that nucleophosmin participates in Rep-mediated 
nicking at the AAV2 TRS [70]. Moreover, it is suggested 
that nucleophosmin has a role also in virion assembly via 
formation of Rep-Cap-NPM complexes [70]. 

Transcriptional Regulation 

 The AAV2 transcripts are generated from three different 
promoters (p5, p19, and p40) and all pre-mRNAs are 
generated by the cellular RNA polymerase II complex. 
Although none of the subunits of the TATA-box dependent 
transcription initiation complex (formed by TFII, TBP, and 
Pol II) were identified associated with AAV2 RCs in 
presence of a helper virus, at least TAF1 (a subunit of TFII; 
[144]) and TBP [169] were found associated with AAV2 
Rep in absence of a helper virus. It is possible that these 
cellular initiation complex factors are also involved in the 
initiation of AAV2 transcription, similar to their role in 
HSV-1 [170] and Ad [171] infection. In addition, it has been 
shown that the TATA box in cis and the TBP in trans are 
involved in Rep-dependent replication from the minimal 
replication origin present within the AAV2 p5 promoter 
region [172]. 

 Transcriptional activity is not only dependent on the 
formation of the initiation complex, but is tightly regulated 
by transcription factors and coactivators [173]. Several 
transcriptional regulator proteins including Sp1, E2F, p53, 
and PHB2 as well as transcriptional coactivators including 
SUB1 and FLII were found in Ad and HSV-1 supported 
AAV2 RCs (Tables 1 and 2, Figs. 1, 2; [64,72,100,169, 
174]). It is worth mentioning that many more proteins 
involved in transcription (string data base) were found in Ad 
supported AAV2 RCs (E2F, PHB2, RuvBL1, SSB, SNW1, 
Sp1, SuB1, SUPT6H, p53, TRIM24, HDAC2, DMAP1, 
DHX9, YBX1; Table 1, Fig. 1) compared to HSV-1 
supported AAV2 RCs (PHB, RuvBL2, FLII, hnRNPD, 
germinin, p53; Table 2, Fig. 2). The proteins found in Ad 
coinfection cover diverse steps of cellular transcription 
including regulation (E2F or PHB2, string data base), 
elongation (SUPT6H, string data base), and termination 
(SSB, string data base), while transcription proteins found in 
presence of HSV-1 coinfection are mainly regulators of 
initiation (string data base). Interestingly, in absence of a 
helper virus, several more cellular transcriptional regulators 
were found associated with AAV2 Rep including JUN, 
HMG1, and topors [153,175,176]. It is possible that certain 
helper virus proteins can substitute for cellular proteins 
involved in regulation, elongation, and termination of AAV2 
transcripts in coinfected cells. For example the HSV-1 ICP4 
protein, which is involved in several steps of HSV-1 
transcription, including elongation [177], might also be 
involved in elongation of AAV2 transcripts. For other helper 
virus proteins, namely the Ad E1A and DBP [52,56,178] as 

well as the HSV-1 ICP0 protein [57], a positive impact on 
rep gene expression has been shown previously. 

Histones and Histone-Modulating Proteins 

 As mentioned above, prohibitin is another cellular 
protein that is recruited into both Ad and HSV-1 supported 
AAV2 RCs (Tables 1 and 2, Fig. 3). Prohibitin is a potential 
tumor suppressor protein [179]. Similar to Rb, prohibitin 
mediates suppression of the E2F transcription factor [179]. 
Prohibitin is recruited into SV40 RCs and represses 
transcription from SV40 promoters together with histone-
deacetylase and N-CoR [180]. Deacetylation of histones 
leads to a tight binding of histones to the DNA [181] and 
therefore transcriptional repression. 

 Upon HSV-1 infection, HDAC2 in a complex with 
CoREST, LSD1 and REST is involved in the temporal 
regulation of HSV-1 gene expression by repression of 
premature transcription of E and L genes [182]. Also upon 
Ad infection, histone-deacetylase has been shown to interact 
with E1A in order to regulate temporal expression of the Ad 
genes [183]. Although not found during AAV2 and HSV-1 
coinfection, HDAC2 was found associated with Ad 
supported AAV2 RCs (Table 1; Fig. 1). As already 
mentioned, E1A has been shown to be required directly for 
the activation of the AAV2 p5 promoter [56]. Therefore, it is 
possible that Ad E1A together with prohibitin and histone-
deacetylase regulates temporal expression of AAV2 genes 
via modification of histones associated with viral DNA. 

 Indeed several histone proteins were found in both Ad 
and HSV-1 supported AAV2 RCs (Tables 1 and 2, Fig. 3). 
This is in line with a report showing that within hours of 
infection ds AAV2 DNA is associated with nucleosome-like 
structures, independent of the presence or absence of a 
helper virus [184]. ds AAV2 DNA associated with 
nucleosomes may be created either by reassociation of 
incoming parental ss DNA or by integration into the cellular 
genome [184]. Similar results have been observed also for 
autonomous parvoviruses, such as minute virus of mice 
(MVM; [185]). Histones have also been found to associate 
with rAAV genomes and induce gene silencing, but 
expression can be rescued by treatment of the cells with 
HDAC inhibitor [186]. 

POSTTRANSCRIPTIONAL MODIFICATION 

Polyadenylation Capping, and Cap Recognition 

 In cells pre-mRNA cap formation and polyadenylation 
are coupled to transcription [187]. Similar to the host RNAs, 
viral RNAs need to be equipped with 5’ Methyl-Gppp caps 
and 3’ poly-adenylated tails or proteins that substitute for 
these functions, in order to allow nuclear export, translation, 
and stability of mRNA. All AAV2 transcripts contain a 
polyadenylation site. Similar to its helper viruses Ad and 
HSV-1, AAV2 polyadenylation and capping may be 
performed by host enzymes. Nevertheless, none of the 6 
cellular proteins necessary for mRNA polyadenylation 
cleavage and polyadenylation specificity factor (CPSF), 
cleavage stimulation factor (CstF), cleavage factors Im and 
IIm, poly(A) polymerase, and poly(A)-binding protein II 
(PABP [188]), have been identified as associated with 
AAV2 RCs. However, upon HSV-1 infection it has been 
shown that hnRNPL, a component of the hnRNP complex 
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[189], functions as an adaptor protein to recruit proteins 
necessary for viral mRNA polyadenylation and 
nucleocytoplasmic export [190]. Several proteins of the 
hnRNP complex were indeed found associated with AAV2 
RCs when HSV-1 (hnRNPA3, AB, C, D, H1 and M) or Ad 
(hnRNP U) was the helper virus (Tables 1 and 2, Figs. 1, 2). 
These components of the hnRNP complex are involved in 
several functions including polyadenylation, splicing (see 
below), and localization of mRNAs [189]. Similar to their 
role in HSV-1 infection, hnRNPs proteins may be involved 
in polyadenylation and nucleocytoplasmic export of AAV2 
mRNAs [190]. In particular hnRNPH, which has been shown 
to be directly involved in the polyadenylation of cellular 
mRNAs [189], may support polyadenylation of AAV2 
mRNAs in presence of HSV-1. 

 The eukaryotic initiation factor eIF4F recognizes 5  caps 
of mRNAs and mediates initiation of translation via 
recruitment of ribosomes to mRNA [191]. The different 
functions that can be contributed to its subunits include 
recognition of the mRNA 5  cap structure (eIF4E), delivery 
of an RNA helicase to the 5  region (eIF4A), bridging of the 
mRNA and the ribosome (eIF4G), and circularization of the 
mRNA via interaction with PABP [191]. The helicase 
component eIF4A1 was found associated with Ad supported 
AAV2 RCs (Table 1, Fig. 1). 

 Even if not found in cells coinfected with AAV2 and 
HSV-1, eIF4A is also involved in HSV-1 infection, as the 
HSV-1 endoribonuclease vhs binds to eIF4A to promote 
degradation of cellular mRNAs [192,193], while HSV-1 
RNAs are largely spared from vhs-eIF4A mediated 
degradation [194]. Which role aIF4A plays for AAV2 
replication remains to be investigated and might be 
dependent on the type of helper virus. 

 Although not much is known about polyadenylation of 
AAV2 mRNAs, the presence of AAV2 polyadenylation sites 
has been shown to be necessary for Rep supported AAV2 
pre-mRNA splicing in cells coinfected with Ad [195,196]. 

Pre-mRNA Splicing 

 All AAV2 pre-mRNAs contain introns allowing 
alternative RNA processing of the overlapping transcription 
products [195]. Transcription from the p5 and p19 promoters 
generates mRNAs which encode Rep 78 and Rep 52, 
respectively; while spliced mRNAs from these promoters 
encode Rep 68 and Rep 40 [195]. Not only splicing but also 
alternative splicing plays an important role in the generation 
of the two different mRNAs generated from the p40 
promoter, for translation of the AAV2 capsid proteins VP1 
as well as VP2 and VP3 [195]. In addition, the use of two 
different start codons on the 2.3-kb mRNA, gives rise to VP2 
and VP3 [197,198]. As splicing of the nascent AAV2 
transcripts is an essential step in AAV2 replication, it is not 
surprising that one of the main groups of proteins found in 
Ad and HSV-1 supported AAV2 RCs belong to the cellular 
splicing machinery including serine/arginine (SR)-rich 
proteins (SRSFs) and heterogeneous nuclear 
ribonucleoproteins (hnRNPs; [199]). SRSFs are involved in 
recruiting the splicing machinery to pre-mRNAs (also called 
heterogeneous nuclear RNA (hnRNA)), thereby supporting 
splicing together with hnRNA-binding proteins (hnRNPs; 
[199]). However, hnRNPs are also implicated in the 

repression of splicing events by blocking spliceosome 
assembly [199]. Both SRSF and hnRNP binding sites are 
located at exon/intron junctions of pre-RNAs [199]. The 
interplay between SRSF-mediated support and hnRNP-
mediated repression of splicing has been found to influence 
constitutive and alternative splicing events of cellular pre-
mRNAs [199]. It is tempting to speculate that similar to their 
function on cellular pre-mRNAs, SRSFs and/or hnRNPs 
found in AAV2 RCs (Tables 1 and 2, Fig. 1 and 2) regulate 
constitutive splicing of the two Rep pre-mRNAs from the p5 
and p19 promoter [195] as well as alternative splicing of the 
capsid pre-mRNA from the p40 promoter [195]. Besides the 
cellular splicing machinery, the AAV2 Rep78/68 proteins as 
well as helper virus factors are involved in efficient 
processing of nascent AAV2 transcripts [200]. The Ad 
factors E2a, E4, and VA in combination with Rep as well as 
the HSV-1 gene products UL5, UL8, UL52 and UL29 have 
been shown to stimulate splicing of AAV2 RNA [195]. The 
AAV2 Rep proteins and helper virus factors might influence 
the composition and activity of RNA processing factors 
associated with the RNA polymerase II complex upon 
AAV2 gene expression; however, the detailed mechanism of 
Rep and helper virus proteins supported AAV2 mRNA 
splicing is not yet determined. 

 Besides their role in mRNA processing, hnRNPs might 
also be involved in transcriptional regulation, recombination, 
and telomere maintenance [201]. The reported hnRNP 
function in protecting single-stranded telomeric DNA repeats 
from nuclease attacks [201] might also be important for 
maintaining the integrity of ss AAV2 genomes. 

mRNA EXPORT 

 mRNA export is intimately coupled to splicing, via exon 
junction complex mediated escort by the export receptor 
TAP/NXF 1 [202]. However, this factor has not been found 
associated with AAV2 RCs. Besides TAP/NXF 1, 
nucleoporins are other central proteins involved in mRNA 
nuclear export, which were found associated with both Ad 
(Nup85) and HSV-1 (Nup153) supported AAV2 RCs 
(Tables 1 and 2, Fig. 3). Nucleoporins may contribute to the 
export of AAV2 mRNAs in coinfected cells. In addition to 
their function in mRNA export, there is evidence that 
nucleoporins may also play a role in DNA repair (see above). 
Two other proteins, hnRNPA3 and RAN, which were found 
associated with HSV-1 and Ad supported AAV2 RCs, 
respectively, may also be implicated in viral mRNA 
trafficking [203]. 

CYTOPLASMIC PROTEINS 

 Several cytoplasmic and mitochondrial proteins were 
found associated with AAV2 Rep in co-IP experiments in 
both Ad and HSV-1 supported AAV2 replication [64,68]. 
The significance of Rep associated with ribosomal factors 
(RPS and RPL proteins; Tables 1 and 2, Fig. 3) is not clear. 
It is assumed that because of their abundance, ribosomal 
proteins are often found in proteomic screens [64], and 
therefore could likely by a contamination of the purified 
extracts [68]. But associations of Rep with cytoplasmic 
proteins in general is not entirely unexpected, considering 
that Rep68 is detected not only in the nuclear [27,45,85], but 
also in the cytoplasmic fraction of cells coinfected with 
AAV2 and Ad [85]. In addition, Rep 78/68 proteins have 
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been previously shown to interact with another cytoplasmic 
protein, KCTD5, in cells coinfected with AAV2 and Ad 
[73]. KCTD5 has been shown to act as a substrate-specific 
adaptor in multimeric cullin E3 ligase reactions, by 
recruiting proteins for ubiquitination and subsequent 
proteasome-dependent degradation [204]. It is likely that 
although only present in small amounts, AAV2 Rep78/68 
proteins may have also important functions in the regulation 
of cytoplasmic proteins such as KCTD5. 

 Another group of proteins found associated with AAV2 
Rep belong to the cellular myosin network (Tables 1 and 2, 
Fig. 3). For HSV-1, interference with cellular myosin has 
been shown to be implicated in HSV-1 entry processes [205] 
as well as virion egress [206,207]. In addition, alterations in 
the distribution of myosin (and actin) filaments in cells 
infected with HSV-1 have been observed [206-208]. Rep 
association with these factors might influence the 
interference of HSV-1 with the cytoskeleton in coinfected 
cells. 

 Another cytoplasmic protein associated with Rep78 
during both, Ad and HSV-1 supported AAV2 replication is 
ABCE1 (Tables 1 and 2, Fig. 3). In the ATP-binding cassette 
(ABC) multigene family, the ABCE subfamily is involved in 
regulation of protein synthesis [209]. Binding of ABCE1 to 
the eukaryotic initiation factor 2 initiates translation [210]. In 
addition, ABCE1 interferes with the interferon mediated 
cellular response against viruses, via ribonuclease L (RNase 
L) of the 2'-5' oligoadenylate/RNase L (2-5A/RNase L) 
pathway [211]. Several viruses appear to have developed 
strategies to counteract the antiviral activity of the  
2-5A/RNase L pathway including HSV-1 and vaccinia virus 
[212,213]. It is possible that interaction of Rep 78 with 
ABCE1 is implicated in counteracting the 2-5A/RNase L 
activity. On the other hand ABCE1 might support AAV2 
capsid assembly, similar to its role in HIV infection, where 
ABCE1 binds to the HIV-1 Gag and functions as a 
chaperone by promoting ATP-dependent conformational 
changes important for HIV capsid assembly and RNA 
packaging [214]. 

MITOCHONDRIAL PROTEINS 

 As mentioned above, mitochondrial proteins were found 
associated with AAV2 Rep in co-IP experiments including 
ATP5B, ATP5C1, HSPA9, ACAD9, ATP5O, SSBP1, and 
CMC1 (Tables 1 and 2; Figs. 1, 2; [64,68]). It is suggested 
that the interaction of Rep with several mitochondrial 
proteins may be a consequence of AAV2 interference with 
the cells apoptotic pathway [68]. Besides their central role in 
apoptosis, mitochondria are also central elements of the host 
defense against viral infections [215]. Therefore, AAV2 
interference with mitochondrial proteins may also support 
productive viral infection by preventing excessive antiviral 
responses of the host cell. 

CONCLUDING REMARKS 

 Co-IP experiments as well as immunofluorescence 
analysis of cells coinfected with AAV2 and helper virus, 
either Ad or HSV-1, identified numerous cellular proteins 
that interact with Rep78 and/or are recruited into AAV2 
RCs. Clearly additional experiments will be needed to 
confirm these interactions and to investigate the role of most 

of these cellular proteins identified in AAV2 RCs in AAV2 
replication. In this article, we nevertheless suggest potential 
functions in fundamental steps of AAV2 replication. 

 It is conspicuous that irrespective of the type of helper 
virus (Ad or HSV-1), the largest functional categories of 
cellular proteins of AAV2 RCs concern DNA replication and 
repair. In addition several hnRNPs involved in RNA 
metabolism as well as a minor group of cytoplasmic and 
mitochondrial proteins were identified as Rep78 interacting 
partners in presence of either helper virus. By taking a closer 
look at the composition of the functional categories, it is 
apparent that the participation of cellular proteins in AAV2 
DNA and RNA metabolism depends not only on the specific 
replication strategy of AAV2, but also on the available 
helper virus in coinfected cells. Ad and HSV-1 follow very 
different strategies to replicate their genomes. Ad DNA 
replication occurs via a strand displacement mechanism in 
which both strands are synthesized in a continuous fashion 
after protein-primed initiation. In contrast, the basic model 
for HSV-1 replication is a rolling-circle mechanism 
including leading- and lagging-stand synthesis. Due to the 
different modes of replication, it is not surprising that 
proteins involved in AAV2 replication alter depending on 
the type of helper virus. Since AAV2 replication occurs by a 
mechanism distinct from that of both helper viruses, only 
some of the helper virus replication proteins participate in 
AAV2 replication, while others have to be substituted by 
cellular proteins. For example, while Ad supported AAV2 
replication uses central cellular components of the DNA 
replication machinery, such as the MCM complex and 
polymerase delta, HSV-1 supported AAV2 replication uses 
helperviral DNA replication proteins including the HSV-1 
helicase-primase complex (UL5/UL8/UL52) and the HSV-1 
polymerase (UL30; [57-59]). The presence of helper virus 
substitutes of cellular proteins, and vice versa, may allow 
AAV2 to expand the host range. Besides cellular and helper 
virus DNA replication proteins, several factors involved in 
DNA damage sensing and repair seem to be important for 
AAV2 replication. It was shown that cells exposed to 
genotoxic agents (e.g. HU or IR) support efficient helper-
independent AAV2 rep expression and low levels of viral 
DNA replication [100-103]. In addition, for the autonomous 
parvovirus minute virus of mice, the induction of a DNA 
damage response facilitates viral replication [216]. Upon 
coinfection with a helper virus, a defined set of DNA 
damage sensing and repair proteins were found associated 
with AAV2 RCs. Some of these proteins, e.g. MMR 
proteins, were found exclusively in HSV-1 supported AAV2 
RCs. MMR proteins may be implicated in proofreading of 
the viral polymerase and efficient expression of helper virus 
IE genes [155], which in turn would enhance AAV2  
replication. Also, the role of the MRN complex in AAV2 
replication seems to depend on its differential effect on the 
helper virus. Although the effect of many cellular proteins on 
AAV2 replication is indirect and linked to their effect on the 
helper virus, other proteins seem to have a more direct role 
in AAV2 replication. A large number of DNA damage 
sensing and repair proteins were identified associated with 
both Ad and HSV-1 supported AAV2 RCs (e.g. RPA, ATM, 
H2AX, XRCC5/6, and p53). In this context, AAV2 was 
shown to modulate the interaction of the helper virus with 
the cellular DDR [65-67]. Interestingly, while Ad and HSV-
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1 induce and inactivate different pathways of the DDR to 
promote their replication [92,94,95], cellular DDR is more 
similar when coinfected with AAV2. For example, numerous 
proteins involved in NHEJ are recruited into HSV-1 as well 
as Ad supported AAV2 RCs [64-68], while in cells infected 
with Ad alone NHEJ is virtually inactivated. A potential role 
of NHEJ proteins in AAV2 RCs is to maintain integrity of 
the viral genome, by protecting the AAV2 DNA from further 
processing by the AAV2 Rep78 endonuclease activity after 
nicking at the TRS. In addition, NHEJ components seem to 
be involved in circularization of incoming AAV2 genomes 
[108,112], a similar role has been described for retrovirus 
infection [217]. But not only AAV2 modulates the helper 
virus induced DDR. The DDR induced by AAV2 alone is 
completely different from that induced upon coinfection with 
AAV2 and a helper virus. In that sense, the helper viruses 
strongly manipulate the AAV2 induced DDR. For example, 
several proteins of the ATR mediated DDR activated and 
recruited to AAV2 DNA in absence of a helper virus 
[82,104] were not found associated with helper virus 
supported AAV2 RCs. Moreover, in cells coinfected with 
AAV2 and HSV-1, ATR signaling via Chk1 seems to be 
abrogated [67]. 

 When comparing the minimal set of Ad and HSV-1 
helper factors for AAV2 replication, it is conspicuous that 
several of the helper proteins from Ad but none of the helper 
proteins provided by HSV-1 are involved in AAV2 RNA 
metabolism [53,55-59]. Also more cellular proteins involved 
in RNA metabolism were found associated with Ad 
supported AAV2 RCs than with HSV-1 supported AAV2 
RCs. It is possible that other HSV-1 proteins that do not 
belong to the minimal set of helper factors can substitute for 
the cellular RNA metabolism proteins involved AAV2 
replication. 

 As all AAV2 transcripts are spliced [195], it is not 
surprising that several hnRNPs were found associated with 
HSV-1 supported AAV2 RCs. Cellular mRNA splicing 
proteins, including hnRNPs and SRSFs, are even more 
abundant in Ad supported AAV2 RCs. It would be 
interesting to define the precise localization of these proteins 
during AAV2 replication in order to spatially monitor 
transcriptional activity within AAV2 RCs. For some proteins 
of the DDR, such a monitoring within/around AAV2 RCs 
has been performed [65-67] and the data support the idea 
that AAV2 RCs are well-structured and sub-
compartmentalized. In this context, it is suggested that the 
nuclear matrix acts as a scaffold to which different proteins 
are recruited and retained [218]. Further studies are needed 
to determine the importance of such subcompartments for 
AAV2 replication. 

 Besides cellular proteins involved in DNA and RNA 
metabolism, several cytoplasmic and mitochondrial proteins 
were found associated with AAV2 Rep in co-IP experiments 
in both Ad and HSV-1 supported AAV2 replication [64,68]. 
Although the significance of these factors is not known, it 
suggests that additional cellular pathways not directly 
involved in DNA and RNA metabolism are targeted by Rep. 
For example, interaction with cytoplasmic proteins may 
influence AAV2 virion trafficking while interaction with 
mitochondrial proteins may interfere with intrinsic responses 
of the host cell against viral infection [215]. 

 The identification of cellular proteins within helper virus 
supported AAV2 RCs forms the basis for the investigation of 
the functional roles of these proteins in AAV2 infection. The 
identification of cellular inhibitors and enhancers of helper 
virus supported AAV2 replication will contribute to a better 
understanding of the complex mechanisms of interaction 
between AAV2, its helper viruses, and the coinfected cell. 
Moreover, as AAV2 is a widely used vector in biomedical 
applications, the detailed knowledge of the functions of 
cellular proteins in AAV2 gene expression and DNA 
replication may also help to improve vector production and 
transduction efficiency. 

SUMMARY 

 Adeno-associated virus type 2 (AAV2) DNA replication 
takes place in the host cell nucleus in viral replication 
compartments (RCs). These compartments have a defined 
composition of viral and cellular proteins. Co-
immunoprecipitation (co-IP) experiments as well as 
immunofluorescence analysis of cells coinfected with AAV2 
and one of its helper viruses, adenovirus (Ad) or herpes 
simplex virus type 1 (HSV-1), revealed numerous cellular 
proteins that are recruited into AAV2 RCs or interact with 
Rep78. The largest functional categories of cellular proteins 
associated with AAV2 RCs correspond to factors of the 
DNA replication and repair machinery, independent of the 
type of helper virus. In addition, proteins involved in RNA 
metabolism as well as a minor group of cytoplasmic and 
mitochondrial proteins were identified as Rep78 interacting 
partners. Although the majority of cellular proteins 
associated with Ad supported AAV2 RCs was also present in 
HSV-1 supported AAV2 RCs, some proteins were found 
associated with AAV2 RCs only in presence of either Ad or 
HSV-1. The importance of most of the cellular proteins 
identified in AAV2 RCs for AAV2 replication is not known. 
Nevertheless, based on the roles of these proteins in cellular 
processes and in the replication of other viruses, we can 
make some predictions concerning their functions in 
different steps of the AAV2 life cycle. 
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