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Abstract: Hepatitis E virus (HEV) is a causative agent for hepatitis. HEV is transmitted via the fecal-oral route through 

contaminated drinking water and induces zoonotic infections through eating uncooked and undercooked meat of deer, 

wild boar, and swine. In Japan, genotypes 3 (G3) and 4 (G4) are prevalent in domestic swine. Here, we examined the 

genetic variation among HEVs derived from swine fecal samples in Japan. A total of 320 samples were collected at 32 

commercial farm facilities (1 fecal sample from each of 10 pig houses in individual farms). Viral RNA amplification at 

open reading frame (ORF) 3 was possible in 159 (49.7%) of the fecal samples. For genotyping, the same samples were 

subjected to amplification at ORF2 and the resulting amplicons were sequenced. The results revealed that all the HEVs in 

each farm belonged to the same cluster of G3 and G4: G3JP in 8 farms, G3SP in 4 farms, G3US in 6 farms, and G4JP in 2 

farms, unclassified G3 in 2 farms, unable to decide due to a low rate of amplification in 5 farms, and no detection in 5 

farms. Interestingly, the HEVs from one farm were more homogeneous than those of the same cluster that was derived 

from other farms. Thus, the efficiency of farm-to-farm transmission of HEVs is likely to be low and HEV seems to have 

evolved independently at each farm in Japan. 
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INTRODUCTION 

 Hepatitis E virus (HEV) is a causative agent for hepatitis 
[1-3]. Transmission of this virus occurs primarily by the 
fecal-oral route through contaminated drinking water in areas 
with poor sanitation [3]. In addition, zoonotic food-borne 
transmission of HEV from domestic swine, wild boar and 
wild deer after the ingestion of uncooked or undercooked 
meat, such as raw liver and colon/intestines, has been 
reported [4-7]. Although the mortality rate during epidemics 
is <1%, it is significantly higher in pregnant women, i.e., 
~20% [8, 9]. 

 HEV belongs to the genus Hepevirus in the family 
Hepeviridae [10]. The virion does not possess an envelope 
and is approximately 27-34 nm in diameter. Its genome 
consists of a single-stranded, positive-sense RNA of 
approximately 7.3 kilobases (kb) and contains a short 5’ 
untranslated region (5’UTR), three open reading frames 
(ORF1, ORF2, and ORF3) and a short 3’UTR terminated by  
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a poly A tract [3, 11]. HEVs have been classified into 
genotypes 1-4 (G1-G4) [10, 12]. The majority of HEV 
genotypes are classified according to geographical 
prevalence: G1, in Asia and Africa; G2, in Mexico and 
Africa; G3, in broad areas isolated from sporadic cases of 
acute hepatitis E and/or domestic swine in USA, European 
countries, Thailand and Japan; and G4, broadly isolated from 
humans and/or domestic swine in several Asian countries 
including China, Taiwan and Japan [12, 13]. 

 There have been reports supporting that swine serve as 
reservoirs for HEV infection in humans [6, 14-18]. Further, 
significantly higher prevalence of anti-HEV antibody among 
pig handlers than control subjects was reported [14-16]. In 
addition, a high genetic relatedness was observed between 
HEV isolates from humans and from swine in the same 
geographical regions [17]. 

 In Japan, a high prevalence of swine anti-HEV antibodies 
(71%) among swine of 3-6 months of age and a high viremia 
rate (11%) among swine of 2-4 months of age have been 
reported [18, 19]. At least 25 (78%) of 32 patients with 
sporadic cases of acute hepatitis E in Hokkaido, the 
northernmost island of Japan, had consumed grilled or 
undercooked swine liver and/or intestine approximately 2-8 
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weeks prior to the onset of hepatitis E [20]. Swine liver 
specimens from 7 (1.9%) of 363 packages sold in local 
grocery stores in Hokkaido had detectable HEV RNA, with a 
viral load of 10

2
-10

7
 copies/g [6]. Importantly, seven swine 

HEV isolates recovered from packaged swine livers were 
found to be very closely related to viruses recovered from 
patients with hepatitis E on this island. In addition, there is 
evidence of people being infected by HEV after ingesting 
raw meat of infected deer and wild boars [4-6]. Thus, a high 
prevalence of antibodies to HEV in domestic swine and 
transmission among swine through a fecal-oral route similar 
to that in human cases are suspected in Japan [21]. Further, 
evidence that swine could be a source of transmission to 
humans leading to acute hepatitis has accumulated through 
extensive characterization of genetic relatedness, especially 
in G3, mostly forming three clusters, G3JP, G3SP and G3US, 
and G4 forming one cluster, G4JP [6, 18]. Indigenous acute 
hepatitis E infections caused by G3 and G4 in Japan were 
compared for differences in clinical features. It was revealed 
that patients with genotype 4 had significantly higher peak of 
aminotransferase levels and also a longer medium duration 
of hospital stay than those with genotype 3 [22, 23]. Genetic 
variation among HEVs in swine fecal samples is less well 
characterized, except for G3JP [6, 18, 24], since most reports 
have focused on HEVs during viremia in natural infections. 
However, to understand swine-to-swine and farm-to-farm 
transmissions of HEV in the field, a more direct approach 
using a large number of swine fecal samples is needed. In 
this study, we examined a total of 320 swine fecal samples 
from 32 farms in Japan to reveal the prevalence of HEV 
RNA and analyzed their genetic variation. Interestingly, our 
results revealed that all the HEVs in each farm belonged to 
the same cluster, G3JP, G3SP, G3US, or G4JP. In addition, the 
HEVs from one farm were more homogeneous than those 
from the other farms belonging to the same cluster. 

MATERIALS AND METHODS 

Fecal Samples from Swine in Japan 

 A total of 320 fecal samples from swine at 32 
commercial pig farms (1 sample from each of 10 pig houses 
in individual farms) in Japan were obtained for detection of 
HEV RNA by reverse transcription (RT)-polymerase chain 
reaction (PCR). The fecal samples were derived from 13 
farms in Hokkaido island; 7 farms in the Kanto region of 
main island; 3 farms in the Chubu and Hokuriku regions of 
main island; 6 farms in Kyushu and Shikoku islands; and 3 
farms in other regions. Permission for sample collection was 
granted with the condition of not revealing the detailed 
geographical locations for social reasons. Based on a report 
of a high prevalence of HEV in swine of 3-4 months of age 
on farms in Japan [18], we focused on fecal samples from 
swine in this age group. 

 Ten fecal samples were carefully obtained using a special 
tube for the pig fecal sampling. The suckling broods born at 
the same day in individual pig houses, and not brought from 
external sources, were reared continuously in the same 
house, indicating that HEV detected in the suckling pigs was 
either derived from the mother pigs and/or brothers/sisters. 
Ten percent (wt/vol) suspensions of about 100 mg of fecal 
sample in 1 ml of phosphate-buffered saline (PBS; 0.01M, 
pH 7.2-7.4) were centrifuged at 10,000 rpm for 10 min at 

4°C. The supernatant was transferred to a sterilized RNase-
free microfuge tube. The clarified 10% suspensions of fecal 
samples were stored at -80°C prior to use. 

Detection of HEV RNA in Fecal Swine Samples 

 Total RNA was extracted from fecal suspensions using a 
QIAamp Viral RNA Kit (QIAGEN, Hilden, Germany). The 
copy number of HEV RNA was assessed by quantitative 
real-time RT-PCR with a primer set (HE86 and HE87) and 
probe (FHE88) at the ORF3 region, according to Jothikumar 
et al. [25] with a slight modification (Fig. 1). The primers 
and probe were synthesized by Applied Biosystems. The 50-
μl reaction mixture contained 25 μl of 2 x QuantiTect Probe 
RT-PCR kit Master Mix (QIAGEN), 0.5 μl of enzyme 
mixture, 10 μl of RNA sample, 13 l of RNase-free distilled 
water, 400 nM of the primers HE86 and HE87, and 100 nM 
of the TaqMan

®
 probe FHE88. The samples were run using 

Applied Biosystems 7500 Realtime PCR system (Applied 
Biosystems, Foster City, CA). 

 Reverse transcription was carried out at 50°C for 30 min, 
followed by denaturation at 95°C for 15 min. DNA was 
amplified immediately with 45 cycles at 95°C for 15 s and 
60°C for 35 s. FHE88 for detecting PCR amplicons was 
designed based on the sequence of the ORF3 region. An 
ORF3-containing plasmid was constructed from swine G4JP 
strain using pCRII-TOPO (Invitrogen) containing T7 
promoter. To construct a standard curve for quantification, 
RNA fragment was transcribed in vitro from the cloned 
plasmid using T7 polymerase. The copy number of standard 
RNA was calculated with spectrophotometer. 

Genotyping of HEV-Positive Samples 

 Total RNA was extracted from fecal suspensions using a 
QIAamp Viral RNA Kit (QIAGEN). The RNA was reverse-
transcribed with Prime Script

TM 
One Step RT-PCR 

(TAKARA Biomedicals, Shiga, Japan) and subjected to 
semi-nested PCR in the presence of TaKaRa Ex Taq 
(TAKARA Biomedicals). Part of the ORF2 sequence was 
amplified using the primers HE044 and HE040 for the first 
round of amplification, followed by HE044 and an another 
primer, HE041, for the second round (Fig. 1). The PCR 
amplification was carried out for 35 cycles in the same 
conditions for the first and second rounds [94°C, 30 s 
(additional 1 min in the first cycle); 60°C, 30 s; 72°C, 30 s 
(additional 5 min in the last cycle)]. The size of amplified 
products was 506 base pairs (bp) for the first-round PCR and 
467 bp for the second round PCR. The products were 
electrophoresed in 1.5% (wt/vol) Agarose-RE (nacalai 
tesque, Kyoto, Japan) and stained with ethidium bromide, 
then photographed under ultraviolet light.

 

Sequence Analysis of PCR Products at ORF2 

 The products were extracted from the agarose gel using a 
QIAEX

R
II Gel Extraction Kit (QIAGEN). Both strands of 

the products were sequenced using the BigDye Terminator 
Cycle Sequencing Ready Reaction Kit (Applied 
Biosystems). Sequence analysis was performed using 
Genetyx-Mac version 10.1.6 (Software Development, 
Tokyo, Japan). Sequence alignments were generated by 
CLUSTAL W (version 1.83) [26]. A phylogenetic tree was 
constructed by the neighbor-joining method [27], based on 
the partial nucleotide sequence of the ORF2 region (412 nt). 
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Bootstrap values were determined based on 1000 re-
samplings of the data sets [28]. The final tree was obtained 
using the Tree View program (version 1.6.6) [29]. 

 As reference sequences, the following HEVs derived from 
samples in Japan that were available from GenBank were used: 
as G3JP, HE-JA6 (AB082562), wbJYG1 (AB222184), HE-JA21 
(AB115542), swJ570 (AB073912), swJ24-1 (AB094306), 
wbJTS1 (AB222183), JMNG-Oki02C (AB236320), HE-JBD1 
(AB112743), JDEER-Hyo3L (AB189071), JRA1 (AP003430), 
HEVN1 (AB246676), HE-JA23 (AB115544), HE-JA5 
(AB082561), swJ681 (AB073910), swJC1990 (AB096756), 
wbJSG1 (AB222182), HE-JA11 (AB082567), JJT-Kan 
(AB091394), HE-JA9 (AB082565), swJL97 (AB105899), HE-
JBD2 (AB154829), HE-JO-1982 (AB088418), HE-JF2 
(AB079763), JBOAR1-Hyo04 (AB189070), JMO-Hyo03L 
(AB189072), JSO-Hyo03L (AB189073), JTH-Hyo03L 
(AB189074), JYO-Hyo03L (AB189075), HE-JBD3 
(AB154830), swJ23-1 (AB094305), swJ19-1 (AB094279), 
swJL82 (AB105898), swJ22-4 (AB094296), swJ25-1 
(AB094317), and swJ18-1 (AB094275); as G3SP, HE-JA26 
(AB194284), swJ5-1 (AB094216), HEV-Sendai (AB093535), 
HE-JA04-1911 (AB248520), swJ791 (AB073911), swJ8-5 
(AB094230), swJ8-2 (AB094227), swJ12-4 (AB094253), 
swJ12-1 (AB094250), swJ8-8 (AB094233), and swJ8-6 
(AB094231); as G3us: HE-JA4 (AB082560), swJ1-1 
(AB094203), JKN-Sap (AB074918), JMY-Haw (AB074920), 
swJ3-1 (AB094212), swJ4-1 (AB094215), swJ11-1 
(AB094240), swJ6-1 (AB094217), HE-JA7 (AB082563), HE-

JI3 (AB080579), HE-JA8 (AB082564), HE-JA10 (AB089824), 
swJL325 (AB105904), swJL234 (AB105903), HE-JA16 
(AB105892), swJ2-1 (AB094207), swJ16-1 (AB094267), 
swJ17-1 (AB094272), swJ10-1 (AB094238), HE-JAS1 
(AB107366), HE-JA22 (AB115543), HE-JA20 (AB115541), 
HE-JAS3 (AB107368), and HE-JA15 (AB105891); and as 
G4JP, HE-JA1 (AB097812), swJ13-1 (AB097811), JSN-Sap-
FH02C (AB200239), swJ7-5 (AB094223), HE-JI4 
(AB080575), JAK-Sai (AB074915), HE-JA2 (AB220974), HE-
JA17 (AB105893), HE-JAS2 (AB107367), JKK-Sap 
(AB074917), swJL145 (AB105902), HE-JA28 (AB220976), 
HE-JA13 (AB105889), HE-JA14 (AB105890), HE-JA12 
(AB105888), HE-JF5 (AB220973), HE-JF4 (AB220972), JTS-
Sap02 (AB161718), JYW-Sap02 (AB161719), HE-JA19 
(AB220975), JSM-Sap95 (AB161717), HE-JA18 (AB105894), 
HE-JA3 (AB082559), HE-JF3 (AB220971), HE-JK4 
(AB099347), JSN-Sap-FH (AB091395), and HE-J1 
(AB082545). 

RESULTS 

Detection of HEV RNA in Swine Fecal Samples in Japan 

by RT-PCR at ORF3 Region 

 A total of 320 fecal samples from 32 (#1 to #32) farms 
were tested for HEV RNA by RT-PCR using ORF3 primers 
(Fig. 1): ten fecal samples were randomly prepared from pig 
houses (1 sample/house) on individual farms. The sensitivity 
to detect HEV RNA was 10

3.6
 copies/g feces by real-time 

RT-PCR using synthetic HEV RNA (data not shown). HEV 

 

Fig. (1). Location, direction, and sequences of the primers used for RT-PCR. The primers (HE86 and HE87) and probe (FHE88) at the ORF3 

region were used to detect HEV RNA in the swine fecal samples. The HEV RNA-positive fecal samples were further subjected to RT-PCR 

with primers (HE044 and HE040 for the 1
st
 amplification and HE044 and HE041 for the 2

nd
 amplification) at the ORF2 region. The 

sequences of the primers and probe are shown. 

HE041

AAAAAA 3’

HE040

5’cap

TTM ACW GTC RGC TCG CCA TTG GC [ M = A or C; W = A or T; R = A or G ]                  

CAA GGH TGG CGY TCK GTT GAG AC [ H = A,T or C;Y = T or C; K=G or T ]
CCCTTRTCCTGCTGAGCRTTCTC

GGT GGT TTC TGG GGT GAC
AGG GGT TGG TTG GAT GAA
5’-FAM-TGA TTC TCA GCC CTT CGC-TAMRA-3’

HE86 (5286 –5303)*; 
HE87 (5355 –5338)*; 
FHE88 (5309 –5326)*; 

HE041 (6403 –6381)*; 

HE044 (5937 –5959)*; 
HE040 (6442-6420)*; 

FHE88
HE86 HE87RT-PCR

Genotyping

ORF1

1st   PCR

2nd PCR

ORF3

ORF2

HE044

HE044

*Nucleotide position of swJ570; AB073912
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RNA was detected in 159 (49.7%) of the fecal samples, with 
extensive variation in the rate of detection among the farms, 
ranging from 0% to 100%, as summarized in Table 1. 

Genotyping of HEVs from the Swine Fecal Samples in 
Japan 

 Next, we examined the sequence variation in these 
samples by RT-PCR using ORF2 primers (Fig. 1). As shown 

by the phylogenetic tree (Fig. 2A), the HEVs derived from 
one farm were quite similar and were further well 
distinguished from those from the other farms. Therefore, 
one representative sequence from individual farms was 
randomly selected and used for the next phylogenetic tree, 
together with already reported HEV sequences from 
GenBank as references (Fig. 2B). As a consequence, the 
HEV sequences from 8 (19 samples), 4 (16 samples), 6 (50 

Table 1. Summary of HEV RNA in Fecal Samples from Swine in Japan 

 

Cluster 
Farm 

HEV-RNA
+
 in 10 

Houses  G3JP G3SP G3US G4JP G3Unclassified 
Too Low Amount 

for Genotyping* 
Not Done† 

#1 (swJB-A)  10/10  0  0  10 0  0 0  0 

#2 (swJB-B) 8/10  0  0  8 0  0 0  0 

#3 (swJB-C) 10/10  0  0  10 0  0 0  0 

#4 (swJB-D) 8/10  0  4  0 0  0 4  0 

#5 (swJB-E) 7/10  0  3  0 0  0 3  1 

#6 (swJB-F) 9/10  0  8  0 0  0 1  0 

#7 (swJB-G)  1/10  0  0  0 0  0 1  0 

#8 (swJB-H) 9/10  0  0  0 9  0 0  0 

#9 (swJB-I) 9/10  0  0  9 0  0 0  0 

#10 (swJB-J) 4/10  0  0  0 3  0 1  0 

#11 (swJB-K) 9/10  0  0  9 0  0 0  0 

#12 (swJB-L) 1/10  0  1  0 0  0 0  0 

#13 (swJB-M) 4/10  0  0  4 0  0 0  0 

#14 (swJR-A) 1/10  0  0  0 0  0 1  0 

#15 (swJR-B) 3/10  2  0  0 0  0 1  0 

#16 (swJR-C) 4/10  0  0  0 0  2 0  2 

#17 (swJR-D) 0/10  0  0  0 0  0 0  0 

#18 (swJR-E) 10/10  2  0  0 0  0 0  8 

#19 (swJR-F) 10/10  0  0  0 0  2 0  8 

#20 (swJR-G)  0/10  0  0  0 0 0 0  0 

#21 (swJR-H)  2/10  0  0 0 0 0 2  0 

#22 (swJR-I)  1/10  0 0 0 0  0 1  0 

#23 (swJR-J) 1/10  0 0 0 0  0 1  0 

#24 (swJR-K) 0/10  0 0 0 0  0 0  0 

#25 (swJR-L) 7/10  2 0 0 0  0 0  5 

#26 (swJR-M) 1/10  1 0 0 0  0 0  0 

#27 (swJR-N) 8/10  2 0 0 0  0 0  6 

#28 (swJR-O) 10/10  2 0 0 0  0 0  8 

#29 (swJR-P) 7/10  6 0 0 0  0 1  0 

#30 (swJR-Q) 5/10  2 0 0 0  0 0  3 

#31 (swJR-R) 0/10  0 0 0 0  0 0  0 

#32 (swJR-S) 0/10  0 0 0 0  0 0  0  

Total  159/320  19 16  50 12  4 17  41 

*The amounts amplified by RT-PCR at ORF2 were too low for genotyping. 
†Since randomly selected HEV samples showed similar sequences, the remaining samples from the same farm were not subjected to sequencing. 
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samples), and 2 (12 samples) farms were classified into G3JP, 
G3SP, G3US, and G4JP, respectively, as summarized in Table 
1. The HEVs from farms #16 (2 samples) and #19 (2 
samples) showed similar sequences to G3, but were located 
in a different cluster of G3JP, G3SP and G3US (named 
G3Unclassied in Fig. 2B). A total of 17 samples from farms #7, 
#14, #21, #22 and #23 showed too weak bands to permit 
direct sequencing (Table 1). In addition, the amplified RNA 
amounts of several samples from farms #4, #5, #6, #10, #15 
and #29 were also too small for genotyping, but the other 
samples from these farms could be efficiently amplified for 
sequencing (Table 1). Thus, the HEVs detected in the 
samples derived from the same farms were highly 
homogeneous and therefore, a total of 41 samples from 
farms #5, #16, #18, #19, #25, #27, #28 and #30 were not 
subjected to sequencing. 

Phylogenetic Analysis of Swine-Derived HEVs with 
Reported Swine- and Human-Derived HEVs 

 Next, we characterized the sequence variation in 
individual clusters of G3 and G4 HEVs in this study by 
constructing a phylogenetic tree that included reported 
isolates of HEVs derived from samples in Japan (Fig. 3). 
One representative sequence per pig farm was used for the 
tree construction. The data showed that among the sequences 
belonging to the same clusters of G3, there were 
considerable variations. 

 The HEVs belonging to G3JP were heterogeneous, except 
for the HEVs that were isolated from the same origin, such 
as those from deer and humans infected by eating deer meat 
[5]. All the HEVs that were classified into G3JP in this study 
were remarkably different from the reported isolates of G3JP 
derived from humans and swines. Analysis revealed that the 
swine G3JP HEVs in this study shared 95.9-86.3% nucleotide 
sequence identity to previously reported HEVs of swine, 
human, boar or deer origin. 

 In the case of G3SP, swJB-E10 and swJB-F1 were far 
from the reported isolates derived from humans. Most 
isolates of the HEVs that were classified into G3SP in this 
study were close to those of reported swine isolates. Further 
analysis revealed that the swine G3SP HEVs in this study 
shared 99.5-89.1% nucleotide sequence identity to HEVs of 
swine or human origin. 

 In the case of G3US, most isolates of the HEVs in this 
study were close to those of reported swine isolates but not 
human isolates as well as G3SP. swJB-B1 and swJB-M8 were 
very close, although the HEV sequences were essentially 
heterogeneous among pig farms in this study. The analysis 
revealed that the HEVs that were classified into G3US in this 
study shared 99.8-89.1% nucleotide sequence identity to 
HEVs of swine and human origin. 

 In the case of G4JP, lot of isolates from humans have 
been reported and seem to be genetically divided into several  

Fig. (2). Phylogenetic tree at ORF2. The phylogenetic tree was constructed based on the partial nucleotide sequence (412 nucleotides) at 

ORF2 of HEVs of a total of 101 swine fecal samples. A, the 101 HEV samples available for sequencing after RT-PCR with primers at the 

ORF2 region (Fig. 1) were subjected to phylogenetic analysis. B, HEV representative samples from each farm (#1, swJB-A1; #2, swJB-B1; 

#3, swJB-C1; #4, swJB-D1; #5, swJB-E10; #6, swJB-F1; #8, swJB-H7; #9, swJB-I1; #10, swJB-J8; #11, swJB-K1; #12, swJB-L8; #13, 

swJB-M8; #15, swJR-B2; #16, swJR-C9; #18, swJR-E3; #19, swJR-F1; #20, ; #25, swJR-L1; #26, swJR-M2; #27, swJR-N1; #28, swJR-O3; 

#29, swJR-P5; and #30, swJR-Q8) were used for the phylogenetic analysis, together with sequences belonging to genotypes 1 to 4 from the 

GenBank. Bootstrap values of >70% are indicated for the major nodes. The phylogenetic tree was constructed by the neighbor-joining 

method with 1000 bootstrap value. 
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Fig. (3). Phylogenetic analyses of HEV sequences in G3 and G4 clusters. The 101 HEV samples available for sequencing in the ORF2 region 

were analyzed independently in G3JP, G3SP, G3US, and G4JP (highlighted with yellow), together with sequences belonging to individual 

clusters from the GenBank (red for the HEVs from humans, blue for the HEVs from swine, and green for the HEVs from boar or deer in 

Japan). Bootstrap values of >70% are indicated for the major nodes as a percentage of the data obtained by neighbor-joining method with 

1000 boot strap value. 
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populations. Thus, although sequence information has been 
accumulated on human-derived HEVs, there was only 
limited information on swine-derived G4JP HEVs in Japan. 
Both swJB-H7 and swJB-J8 in this study relatively close to 
several HEVs from humans (Fig. 3). Analysis revealed that 
the G4JP HEVs in this study shared 97.6-87.9% nucleotide 
sequence identity to HEVs of swine and human origin. 

 Similar isolates as G3Unclassified from one (swJR-C9) of the 
two farms were also previously reported in Japan [19, 30]. 

DISCUSSION 

 The detection rates for HEV RNA in 32 pig farms in 
Japan were found to be highly variable, ranging from 0 to 
100%. In this study, sequence data for the ORF2 region 
revealed that the HEVs were clearly classified into four 
known clusters: G3JP, G3SP, G3US, and G4JP. The HEVs’ 
sequences from one farm showed slight variation even 
among populations belonging to the same cluster. However, 
it is worthy to note that the HEVs derived from individual 
houses within individual pig farms were highly 
homogeneous. Although some reports showed variation 
among swine strains circulating in individual farms in Japan 
[18, 31] and Spain [32], others showed similarity of HEVs 
derived from the same farm [33]. The discrepancy could be 
due to differences in the size of the farms, distance between 
farms, degree of contamination with circulating HEVs, and 
the viral regions sequenced. The results of the present study 
suggest that farm-to-farm transmission of HEV is very rare; 
at least between the pig farms examined in this study even 
though we could not show the detailed geographical location 
of the sampled farms for permission constraints. Further, the 
genetic variation found in our swine fecal samples suggests 
an independent evolution of HEVs in individual pig farm, as 
previously suggested [34]. 

 The variation in the detection rates of HEV RNA among 
the pig farms could be caused by several non-viral factors 
such as sanitary conditions, hosts, facilities, and type of 
farming, as well as human activities. Although HEV 
transmission in swine by the fecal-oral route is suspected, it 
is still unclear how the transmission occurs within or 
between farms. Further, individually sampled farms reared 
piglets derived from the same farms, and not from others, 
suggesting that the identification of closely related sequences 
belonging to the same cluster in individual farms may be due 
to long term sustained transmission of HEVs among swine 
with only minor evolution. In this study, we could not 
specify the factors responsible for the inter-farm 
transmission of HEV strains, such as a common animal 
source, personal relationships, shared water supply, food, or 
workers. 

 Further, the HEVs in this study showed phylogenetic 
similarity to previously reported HEV isolates derived from 
swine, but only part of them showed similarity to HEVs 
from humans. Although the relationship between swine- and 
human-derived HEVs are largely unknown, our data may 
suggest that swine-derived HEVs could be a possible source 
for acute hepatitis in humans. Moreover, most of the known 
human-derived HEVs could have independently evolved 
after transmission from swine to humans. 

 In conclusion, swine HEV was highly prevalent in fecal 
samples from pig farms in Japan. The HEVs in a single farm 

were genetically highly homogeneous, but showed slightly 
greater variation to those derived from other farms. 
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