SUPPLEMENTARY MATERIAL

Further Evidence that Human Endogenous Retrovirus K102 is a Replication Competent Foamy Virus that may Antagonize HIV-1 Replication

Marian P. Laderoute^{#,1,4}, Louise J. Larocque^{1,\$}, Antonio Giulivi^{2,4} and Francisco Diaz-Mitoma^{3,4}

¹Bloodborne Pathogens Division, Blood Zoonotics Unit, Public Health Agency of Canada, Ottawa, Ontario Canada, and [#]Recently Retired from Immune System Management Clinic and Lab, Ottawa, Ontario Canada; [§]Presently at the Centre for Biologics Evaluation, Health Canada, Ottawa, Ontario Canada

²Division of Hematopathology and Transfusion Medicine, The Ottawa Hospital, Ottawa, Ontario Canada

³The Advanced Medical Research Institute of Canada, Sudbury, Ontario Canada

⁴Department of Pathology and Laboratory Medicine, The University of Ottawa, Ottawa, Ontario Canada

Day 0, FCS Wiscent

: Day 7, FCS Medicorp

d Autologous serum

Normal human AB serum

Fig. (S1). Vacuolation does not depend upon source of serum used for culture. Cytospins stained with H & E of uncultured CB day 0 (**a**) or cultured for 7 days in different sources of serum in IMDM as noted above **b**) Wiscent FCS **c**) Medicorp FCS, **d**) autologous serum **e**) normal human AB serum. The results imply the foamy retrovirus was not derived from the FCS used, but was endogenous as all supported vacuolation in cells.

	Property	Prototype Foamy Virus [#]	HERV-K102 ⁺⁺
1	Causes vacuolation in cultured human mononuclear cells in vitro	YES (hallmark) [4]	YES *
2	Particles predominately bud into vacuoles rather than from cell surface membrane for cultured human PBMCs	YES (hallmark) [4]	YES * [5]
3	Immature particles (no electron dense core)	YES (hallmark) [1-3]	YES *
4	Abundant intracellular particles	YES (hallmark) [1-3]	YES *
5	Can cause lytic infection in some human fibroblast cell lines in vitro	YES (hallmark) [1, 2, 8, 9]	YES (MRC-5 but not HFL-1 cells nor Vero cells, see Laderoute MP et al, Patent CA2673395, 2006)
6	Induces lysis in HIV-1 or HTLV-1 infected PBMCs	YES [4]	Unknown
7	Extracellular particles contain DNA and RNA genomes	YES (hallmark) [1-3]	YES [5]
8	Non-pathogenic	YES (hallmark) [1-3]	YES (HERV-K102 is not known to cause disease, particles are found in normal cord blood [5] and as shown here, appears to be induced in monocytes as part of innate immunity, also lacks CKS17 immunosuppressive motif in TM of Env, see below)
9	Lacks the REC/REV/REX Domain in <i>env</i>	Yes (hallmark) [3]	YES (HERV-K102 which is a Type 1 HERV-K (HML-2) lacks this domain but Type 2 have this domain called 'REC, cORF, or K-Rev, [10-12])
10	5'LTR proviral genome begins with "TGTG" (evidence of asymmetric integration process)	YES (hallmark) [13]	YES (distinguishes HERV-K (HML-2) from all other HERVs but is shared with HERV-L, the latter which has some homology to foamy viruses but no <i>env</i> and thus is non-functional, [14])
11	Lacks the CWLC (CXXC) motif in the surface unit of Env	YES (distinguishes from most retroviruses, [15])	YES (distinguishes HERV-K HML- 2 from all other HERVs, [16, 34])
12	Capable of intracellular retrotransposition	Yes (hallmark) [see 2, 17]	Unknown
13	Infectious particles contain DNA genomes	YES (hallmark) for review, see [16, 18]	YES, DNA containing HERV- K HML-2 virions are infectious and replication competent [37]
14	Env is required for particle formation	YES (distinguishes from most retroviruses, [1])	Unknown but processed Env detected with particles*
15	Env must be processed/cleaved for infectivity	YES [19]	N/D appears to be cleaved when isolated from induced CB cells*
16	Env can substitute for orthoretrovirus Env in trans	NO [20]	NO, HERV-K102 Env does not substitute HIV-1 VLPs [38]
17	Uses lysine as tRNA for priming reverse transcription	YES	YES
18	"Complex" retrovirus	YES	YES [7]
19	Temporal transcription regulation: first uses internal promoter 3 ' to <i>env</i> , then LTR for full length transcripts	YES (distinguishes from most retroviruses, [1])	N/D

Supplementary Table S1. Comparison of Features of Prototypic Foamy Virus[#] to Type 1 HERV-K (HML-2) HERV-K102⁺⁺.

20	3' polypurine tract (PPT) conservation of D element	YES, "agg aga ggg" (3' to pol gene, [21])	Partial, has almost identical sequence "gg aga ggg" in reverse orientation at 3' polypurine tract (8943-8936) and one copy at end of <i>pol</i> (4203-4196)
21	Sequence: clustering away from most retroviruses using env or pol	YES (distinguishes spuma viruses, infectious HIV/HTLV and HERV-K HML-2 from all other retroviruses; <i>env</i> and <i>pol</i> analyses, see [15, 22, 23])	YES (distinguishes HERV-K HML-2 from all the other HERVs, [15, 22-24])
22	Lacks the "CKS17" immunosuppressive peptide in the TM region of Env which is common to most pathogenic retroviruses except HIV	YES (distinguishes from most retroviruses, see [15])	YES [15]
23	Nuclear staining of Gag	YES (hallmark and diagnostic for foamy retroviruses, [1])	N/D
24	Lacks the major homology region (MHR) in the capsid (Gag) $QX_3EX_4(F/Y)X_2R$ motif used for particle assembly/egress [25]	YES (distinguishes from most retroviruses, [1])	Partial (Both HERV-K102 and K108 have QxxxE at aa 124 and 128 in Gag but not the rest of the motif)
25	Lacks the Cys-His boxes in the nucleocapsid of Gag: CX ₂ CX ₄ HX ₄ C motif (for RNA genome binding)	YES (distinguishes from most retroviruses, [1])	No [both Type 1 and Type 2 HERV-K (HML-2) have the $CX_2CX_4HX_4C$ in Gag see GenBank for AF164610 (K102- Type 1 and AF164614 K108- Type 2)]
26	Nucleocapsid (nc) <u>not made</u> from Gag (<i>i.e.</i> no cleavage products for nc and capsid)	YES (distinguishes from most retroviruses)	Possibly (see [6] for classical HTDV particles without spikes)
27	Lacks gag-pol fusion protein which is then cleaved (<i>i.e. pol</i> separately transcribed)	YES (distinguishes from most retroviruses, [1])	Not clear
28	Naturally "oncolytic"	YES (distinguishes from most retroviruses, see [26])	N/D. However, the immune system may use HERV-K antigens for lysis and removal of tumor cells [7, 15, 27-30]. Recent report suggests antibodies to Type 1 HML-2 Env promotes apoptosis of tumors [33].
29	Intratumoral injection of replication-competent FV in skin leads to widespread integration <i>i.e.</i> spleen, bone marrow, brain, gonads (appears to easily cross blood-brain and other physical barriers and infects many cell types)	YES (distinguishes from most retroviruses, [26])	Unknown
30	Integration pattern unique, <i>i.e.</i> not like other retroviruses (<i>e.g.</i> , does not integrate into active genes like HIV, or into transcription-start regions like MLV)	YES (no preference nor for certain chromosomal regions, [31])	N/D
31	Up to 20 copies of integrated provirus per cell	YES [32]	Up to 12 proviral copies per genome detected in HESN *
32	Infects human T cells and monocytes/dendritic cells, but not B lymphocytes	YES [4, 32]	Unclear (expression and activation does not appear to involve B cells, unpublished observations)*
33	Uses heparin sulphate to gain access to cells	YES [35]	Unknown.
34	PFV infected cells may increase lentivirus binding and entry	YES [36]	Unknown
35	Immature capsids uniquely congregate into cytoplasm and bud through endoplasmic reticulum generating vacuoles	YES [39]	This hallmark property is known to be shared by B/D retroviruses like HERV-K HML-2 [39] and is shown here in Figure 1c for HERV-K102*
			-

#Prototype Foamy Virus (PFV) (<u>Y07725, NC 001795; GenBank</u>) is formerly known as Human Foamy Virus (HFV) and had been referred to as SFVcpz (hu) because it was found to have originated in chimpanzees despite having been isolated from a human tumor line. For general reviews on the features of foamy viruses see references 1-3 below. ++ (<u>AF164610; GenBank</u>) * in this manuscript N/D = Not determined.

SUPPLEMENTARY REFERENCES

- [1] Linial ML. Foamy viruses are unconventional retroviruses. J Virol 1999; 73: 1747-55.
- [2] Meiering CD, Linial ML. Historical perspective of foamy virus epidemiology and infection. Clin Microbiol Rev 2001; 14: 165-76.
- [3] Delelis O, Lehmann-Che J, Saib A. Foamy viruses: a world apart. Curr Opin Microbiol 2004; 7: 400-6.
- [4] Mikovits JA, Hoffman PM, Rethwilm A, Ruscetti FW. *In vitro* infection of primary and retrovirus-infected human leukocytes by human foamy virus. J Virol 1996; 70: 2774-80.
- [5] Laderoute MP, Giulivi A, Larocque L, et al. The replicative activity of human endogenous retrovirus K102 (HERV-K102) with HIV viremia. AIDS 2007; 21: 2417-24.
- [6] Bieda K, Hoffmann A, Boller K. Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 2001; 82: 591-6.
- [7] Lower R, Boller K, Hasenmaier B, et al. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 1993; 90: 4480-4.
- [8] Murray SM, Picker LJ, Axthem MK, Hudkins K, Alpers CE, Linial ML. Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J Virol 2008; 82: 5981-5.
- [9] Linial M. Why aren't foamy viruses pathogenic? Trends Microbiol 2000; 8: 284-9.
- [10] Barbulescu M, Turner G, Seaman MI, Dienard AS, Kidd KK, Lenz J. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 1999; 9: 861-8.
- [11] Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol 1986; 58: 937-44.
- [12] Mayer J, Ehlhardt S, Seifert M, et al. Human endogenous retrovirus HERV-K (HML-2) proviruses with Rec protein coding capacity and transcriptional activity. Virology 2004; 322: 190-8.
- [13] Enssle J, Moebes A, Heinkelein M, et al. An active foamy virus integrase is required for virus replication. J Gen Virol 1999; 80: 1445-52.
- [14] Cordonnier A, Casella JF, Heidmann T. Isolation of a novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J Virol 1995; 69: 5890-7.
- [15] Benit L, Dessen P, Heidmann T. Identification, phylogeny and evolution of retroviral elements based on their envelope genes. J Virol 2001; 75: 11709-19.
- [16] de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T. Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 2003; 77: 10414-22.
- [17] Rethwilm A. The replication strategy of foamy viruses. Curr Top Microbiol Immunol 2003; 277: 1-26.
- [18] Yu SF, Sullivan MD, Linial ML. Evidence that the human foamy virus genome is DNA. J Virol 1999; 73: 1565-72.
- [19] Bansal A, Shaw KL, Edwards BH, Goepfert PA, Mulligan MJ. Characterization of the R572T point mutant of a putative cleavage site in human foamy virus Env. J Virol 2000; 74: 2949-54.
- [20] Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D. Foamy virus capsids require the cognate envelope protein for particle export. J Virol 1999; 73: 2613-21.
- Peters K, Barg N, Gartner K, Rethwilm A. Complex effects of foamy virus central purine-rich regions on viral replication. Virology 2008; 373: 51-60.
 Belshaw R, Pereira V, Katzourakis A, *et al.* Long term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 2004;
- 101: 4894-9.
 [23] Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K (HML2): implications for present day activity. J Virol 2005; 79: 12507-14.
- [24] Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 2000; 74: 3715-30.
- [25] Willems L, Kerkhofs P, Attenelle L, Burny A, Portetelle D, Kettmann R. The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J Gen Virol 1997; 78: 637-40.
- [26] Heinkelein M, Hoffmann U, Lucke M, et al. Experimental therapy of allogeneic solid tumors induced in athymic mice with suicide gene-transducing replication-competent foamy virus vectors. Cancer Gene Ther 2005; 12: 947-53.
- [27] Wang-Johanning F, Frost AR, Johanning GL, et al. Expression of human endogenous retrovirus K envelope transcripts in human breast cancer. Clin Cancer Res 2001; 7: 1553-60.
- [28] Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL. Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 2003; 22: 1528-35.
- [29] Boller K, Janssen O, Schuldes H, Tonjes RR, Kurth R. Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J Virol 1997; 71: 4581-8.
- [30] Wang-Johanning F, Radvanyi L, Rycaj K, et al. Human endogenous retrovirus K triggers an antigen-specific response in breast cancer patients. Cancer Res 2008; 68: 5869-77.
- [31] Nowrouzi A, Dittrich M, Klanke C, *et al.* Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 2006; 87:1339-47.
- [32] Yu SF, Stone J, Linial ML. Productive persistent infection of hematopoietic cells by human foamy virus. J Virol 1996; 70:1250-4.
- [33] Wang-Johanning F, Rycaj K, Plummer JB, et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst 2012; 104: 189-210.
- [34] Contreras-Galindo R, Kaplan MH, Contreras-Galindo AC, *et al.* Characterization of human endogenous retroviral elements in the blood of HIV-1infected individuals. J Virol 2012; 86: 262-76.
- [35] Plochmann K, Horn A, Gschmack E, et al. Heparan sulfate is an attachment factor for foamy virus entry. J Virol 2012; 86: 10028-35.
- [36] Schiffer C, Lecellier CH, Mannioui A, et al. Persistent infection with primate foamy virus type 1 increases human immunodeficiency virus type 1 cell binding via a Bet-independent mechanism. J Virol 2004; 78: 11405-10.
- [37] Dube D, Contreras-Galindo R, He S, et al. Genomic flexibility of human endogenous retrovirus type K. J Virol 2014; 88: 9673-82.
- [38] Brinzevich D, Young GR, Sebra R, et al. HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes. J Virol 2014; 88: 6213-23.
- [39] Hütter S, Zurnic I, Lindemann D. Foamy virus budding and release. Viruses 2013; 5: 1075-98.