REVIEW ARTICLE


Metal-Tolerant Thermophiles: From the Analysis of Resistance Mechanisms to their Biotechnological Exploitation



Giovanni Gallo, Rosanna Puopolo, Danila Limauro, Simonetta Bartolucci, Gabriella Fiorentino*
Department of Biology, University of Naples Federico II, Edificio 7, via Cinthia n. 6, 80126 Naples, Italy


Article Metrics

CrossRef Citations:
10
Total Statistics:

Full-Text HTML Views: 1844
Abstract HTML Views: 542
PDF Downloads: 286
ePub Downloads: 249
Total Views/Downloads: 2921
Unique Statistics:

Full-Text HTML Views: 962
Abstract HTML Views: 336
PDF Downloads: 218
ePub Downloads: 181
Total Views/Downloads: 1697



Creative Commons License
© 2018 Gallo et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Biology, University of Naples Federico II, Edificio 7, via Cinthia n. 6, 80126 Naples, Italy; Tel: +39081679167; E-mail: fiogabri@unina.it


Abstract

Extreme terrestrial and marine hot environments are excellent niches for specialized microorganisms belonging to the domains of Bacteria and Archaea; these microorganisms are considered extreme from an anthropocentric point of view because they are able to populate harsh habitats tolerating a variety of conditions, such as extreme temperature and/or pH, high metal concentration and/or salt; moreover, like all the microorganisms, they are also able to respond to sudden changes in the environmental conditions. Therefore, it is not surprising that they possess an extraordinary variety of dynamic and versatile mechanisms for facing different chemical and physical stresses. Such features have attracted scientists also considering an applicative point of view. In this review we will focus on the molecular mechanisms responsible for survival and adaptation of thermophiles to toxic metals, with particular emphasis on As(V), As(III), Cd(II), and on current biotechnologies for their detection, extraction and removal.

Keywords: Toxic metals, Resistance systems, Metal bioremediation, Thermostable biosensors, Environmental conditions, Physical stresses.