The Open Petroleum Engineering Journal


ISSN: 1874-8341 ― Volume 12, 2019

An Experimental Study on Percolation Characteristics of a Single-Phase Gas in a Low-Permeability Volcanic Reservoir Under High Pressure

The Open Petroleum Engineering Journal , 2015, 8: 186-192

Tang Xiaoyan

College of Geology and Environment, Xián University of Science and Technology, Xián Shanxi, 710054, P.R. China.

Electronic publication date 29/5/2015
[DOI: 10.2174/1874834101508010186]

CrossRef Citations:

Article Metrics:

Geographical View
Total Statistics:

Abstract HTML Views: 692
PDF Downloads: 283
Total Views/Downloads: 1108

Unique Statistics:

Abstract HTML Views: 437
PDF Downloads: 170
Total Views/Downloads: 708


In this paper, we find that with the decrease in the average pore pressure in the process of gas production, both the slippage effect and the stress sensitivity effect will gradually increase; the increase in the slippage effect is significant, while the increase in the stress sensitivity effect is not. In this paper, the Kalamay volcanic gas reservoir of the Junggar Basin in China was selected as the object of our research. The gas reservoir has typical fractured volcanic reservoirs, and the long-term percolation feature remains unclear. To study the percolation characteristics of singlephase gas under high pressure, the experimental method was designed to simulate these characteristics in the process of gas production by measuring the gas flow in the core and the input and the output pressure at both ends. We carried out simulation experiments of single-phase gas flow percolation characteristics under high pressure using 11 pieces of volcanic rock samples in three wells of the study area. The results show that as the core pore pressure increased, the permeability of low-permeability cores of the volcanic rock decreased significantly at room temperature. However, this decrease became more gradual, which means that the higher the core pore pressure is, the smaller the permeability variation caused by gas slippage is; when the pore pressure is above 10 MPa, the permeability is nearly constant, slippage effect significantly reduces in the process of gas percolation, so it can be completely ignored under these formation conditions. As the pore pressure decreases, the slippage effect and stress sensitivity effect will gradually increase; when the pore pressure is less than 10 MPa, the permeability appears to increase significantly, and this is especially true for a pressure of 5 MPa. The main cause of this result is the slippage effect of gas seepage during the depletion of the gas reservoir, when the pore pressure is lower than a certain value. The valid stress changes of the core are not large, and the stress sensitivity is not strong, so the slippage effect plays a major role, which leads to an increase in the gas permeability during the late period of certain flow gas production.

Download PDF


"I have to express my sincere appreciation for your hard and professional work. Thank you very much!"

Si Zhang
Institute for Strength and Vibration of Mechanical Structures,
Yangtze University, Jingzhou,
Hubei Province,

"My experiences in publishing a paper with Bentham Open is good. I must say that the speed of publication in The Open Petroleum Engineering Journal is very fast. It takes only two month for the pioneer reviewing process. The delay was caused by me. And what’s more, the publisher’s office is quite helpful. I guess they are dealing with thousands emails every week, but they process my request in a very short period of time."

Xin Ma
School of Science, Southwest Petroleum University, Chengdu, China

Browse Contents

Webmaster Contact:
Copyright © 2019 Bentham Open