The Open Petroleum Engineering Journal




(Discontinued)

ISSN: 1874-8341 ― Volume 12, 2019

Paleogene-Neogene Cap Rocks and its Relationship with Hydrocarbon Accumulation in the Zhanhua Sag



Chunyan Wu1, *, Jingong Zhang1, Wei Xiong2, Bo Li2, Yijun Wang3, Jinning Zhang1, Qiang Cui1
1 State key Laboratory for Continental Dynamics/Department of Geology, Northwest University, Xi’an 710069, China
2 Geology Scientific Research Institute of Shengli Oilfield Company, Sinopec, Dongying 257015, China
3 Eastern Geophysical Company Research Institute of Changqing Branch, Xi’an 710021, China

Abstract

To analyse the Zhanhua Paleogene–Neogene cap rocks and its relationship with hydrocarbon accumulation, the seal lithology, the relationship between compaction of argillite rock and its sealing capacity, and its destruction by faults and fractures were studied. The results indicate that there are four types of cap rocks: argillite rock and silty mudstone, microcrystalline carbonate, dense cemented sandstone and dense cemented carbonate. Among these cap rocks, argillite rock is the main type in the Zhanhua Sag. According to the evolutionary characteristics of the argillite rock and its destruction by fractures and faults, the argillite cap can be classified into three categories: porosity cap, fracture transformation cap and the fault transformation cap. Among their sealing capacities, the porosity cap is the best, followed by the fracture transformation cap, and the fault transformation cap is the worst. Through the analysis of the relationship between existing oil & gas reservoirs and the distribution characteristics of the Paleogene–Neogene cap rocks in the Zhanhua Sag, it was found that the cap combination which was below or above the reservoir together controlled the hydrocarbon accumulation and preservation. It means that the destruction of the cap below or down-dip the reservoir is a necessary condition for hydrocarbon accumulation, and only when the sealing capacity of the cap rock above or up-dip the reservoir is better than that of below or down-dip the reservoir, hydrocarbon could be efficiently stored in reservoirs, thus could be effectively enriched.

Keywords: Cap Rock, Fault, Fracture, Hydrocarbon Accumulation, Zanhua Sag.


Article Information


Identifiers and Pagination:

Year: 2016
Volume: 9
First Page: 299
Last Page: 312
Publisher Id: TOPEJ-9-299
DOI: 10.2174/1874834101609010299

Article History:

Received Date: 13/04/2016
Revision Received Date: 03/11/2016
Acceptance Date: 10/11/2016
Electronic publication date: 29/12/2016
Collection year: 2016

© Wu et al.; Licensee Bentham Open

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the State key Laboratory for Continental Dynamics/Department of Geology, Northwest University, Xi’an 710069, China; Tel: +86 13669226216; E-mails: wcy_ gift@sina.cn, wuchunyanbaby@163.com



Track Your Manuscript:


Endorsements



"I have to express my sincere appreciation for your hard and professional work. Thank you very much!"


Si Zhang
Institute for Strength and Vibration of Mechanical Structures,
Yangtze University, Jingzhou,
Hubei Province,
China

"My experiences in publishing a paper with Bentham Open is good. I must say that the speed of publication in The Open Petroleum Engineering Journal is very fast. It takes only two month for the pioneer reviewing process. The delay was caused by me. And what’s more, the publisher’s office is quite helpful. I guess they are dealing with thousands emails every week, but they process my request in a very short period of time."


Xin Ma
School of Science, Southwest Petroleum University, Chengdu, China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2023 Bentham Open