Current Chemical Genomics and Translational Medicine




(Discontinued)

ISSN: 2213-9885 ― Volume 12, 2018

Editorial : High Content Screening for Lead Identification and Optimization



Zhuyin Li*
National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, MSC 3370, Bethesda, MD 20892, USA


Article Information


Identifiers and Pagination:

Year: 2014
Volume: 8
Issue: Suppl-1
First Page: 1
Last Page: 2
Publisher Id: CCGTM-8-1
DOI: 10.2174/2213988501408010001

Article History:

Electronic publication date: 7/2/2014
Collection year: 2014

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 438
Abstract HTML Views: 745
PDF Downloads: 199
Total Views/Downloads: 1382

Unique Statistics:

Full-Text HTML Views: 278
Abstract HTML Views: 463
PDF Downloads: 140
Total Views/Downloads: 881
Geographical View

© Zhuyin Li; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, MCS 3370, Bethesda, MD 20892, USA; Tel: 301-217-5727; Fax: 301-217-5736; E-mail: zhuyin.li@nih.gov




Automated microscope-based High Content Screening (HCS or HCA) has gained tremendous momentum recently because of its ability to capture many subcellular features simultaneously in complex biology systems, and/or to monitor cellular processes that are otherwise intractable using conventional technologies. HCS can be utilized in early drug discovery and preclinical development to accelerate drug discovery. It has been widely used in target validation, lead generation, toxicity studies, and drug mechanism studies. HCS also has the potential to be used to support clinical trials, such as companion diagnostics.

In this special issue on HCS, three HCS-based assays that are applicable for lead identification and optimization are highlighted. To many institutions, the initiation of primary screening is a serious commitment to the targets, pathways or disease hypothesis. Therefore, patho-physiological relevancy, cost, throughput, scalability, quality, etc. must be carefully weighted when designing an assay for primary screening. Unlike traditional HTS, which has one or two measurements, HCS enables one to measure many parameters or features of individual cells or organisms simultaneously. With currently available technologies, HCS-based HTS is still labor-intensive and could be very costly if multiple dyes and/or antibodies are used. Therefore, HCS-based HTS should be considered only if there are no adequate conventional screening technologies that could be used to obtain similar information. In this issue, Peppard and colleagues present an HCS-based HTS entitled “Identifying small molecules which inhibit autophagy: a phenotypic screen using image-based high-content cell analysis” [1Peppard JV, Rugg C, Smicker M, et al. Identifying small molecules which inhibit autophagy: a phenotypic screen using image-based high-content cell analysis Curr Chem Genom Transl Med 2014; 8: 3-15.] to identify small-molecule autophagy inhibitors by following the cytoplasmic redistribution of GFP tagged LC3, a component of the autophagosome, from diffuse to punctate dots in HeLa cells.

Overexpression of tagged proteins may interrupt the interaction between the protein and its partners in the cellular network, thus leading to non-physiologically relevant phenotypes. Therefore, many use antibody stains to monitor the translocation and expression of target proteins, or changes of organelle and cell structures and functions. Antibodies in general are expensive and the use of multiple antibody stains in primary screening could be cost prohibitive, and the multiple wash steps maybe not HTS friendly. However, antibody staining-based HCS assays have played and will continue to play key roles in secondary and tertiary assays, as well as mechanism and toxicity studies. Sum and his colleagues describe the development of an antibody stain-based HCS for microtubule structure, entitled “Establishing a High-Content Analysis Method for Tubulin Polymerization to Evaluate Both the Stabilizing and Destabilizing Activities of Compounds” [2Sum CS, Nickischer D, Lei M, Weston A, Zhang L, Schweiser L. establishing a high-content analysis method for tubulin polymerization to evaluate both the stabilizing and destabilizing activities of compounds Curr Chem Genom Transl Med 2014; 8: 16-26.]. This assay enables the understanding of the mechanisms of action for tubulin-interacting compounds.

Two-dimensional (2-D) monolayer culture cells are routinely employed in primary HTS and in lead generation and optimization. However, these 2-D model systems do not recapitulate the complexity of the 3-D organization and the pathophysiology in tissues and organs. Therefore, the practice of using 2-D cellular models for drug testing is being questioned for its inability to mimic physiological environments of diseased cells in the human body. An increased number of laboratories has started to establish 3-D cellular models for drug testing. Although much less complex than in vivo models or complete organisms, these 3-D cellular models are one-step closer to physiological conditions. In the manuscript of “Live Multicellular Tumor Spheroid Models For High-Content Imaging and Screening In Cancer Drug Discovery” [3Reid BG, Jerjian T, Patel P, et al. live multicellular tumor spheroid models for high-contentimaging and screening in cancer drug discovery Curr Chem Genom Transl Med 2014; 8: 27-35.], Reid and his colleagues report the development of a multicellular tumor spheroid (MCTS) model for drug screening and a simple yet predictive 3-D image analysis algorithm to quantify changes induced by drugs.

In summary, due to its flexibility and information-rich nature, HCS has become the choice for many scientists to examine the temporal and spatial effects of compounds on cells, not only for the intended targets, but also for other cellular targets and pathways. This feature not only enables the identification of the best hits and leads from screening, but also facilitates multi-parameter optimization of leads.

REFERENCES

[1] Peppard JV, Rugg C, Smicker M, et al. Identifying small molecules which inhibit autophagy: a phenotypic screen using image-based high-content cell analysis Curr Chem Genom Transl Med 2014; 8: 3-15.
[2] Sum CS, Nickischer D, Lei M, Weston A, Zhang L, Schweiser L. establishing a high-content analysis method for tubulin polymerization to evaluate both the stabilizing and destabilizing activities of compounds Curr Chem Genom Transl Med 2014; 8: 16-26.
[3] Reid BG, Jerjian T, Patel P, et al. live multicellular tumor spheroid models for high-contentimaging and screening in cancer drug discovery Curr Chem Genom Transl Med 2014; 8: 27-35.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open