The Open Medical Informatics Journal




(Discontinued)

ISSN: 1874-4311 ― Volume 13, 2019

Data Mining Techniques in Medical Informatics



U. Rajendra AcharyaRole: Co-Guest Editor
Address: Department of Electroincs and Computer Engineering Ngee Ann Polytechnic Singapore aru@np.edu.sg
Wenwei YuRole: Co-Guest Editor
Address: Department of Medical System Engineering Graduate School of Engineering Chiba University Chiba Japan yuwill@faculty.chiba-u.jp



Article Information


Identifiers and Pagination:

Year: 2010
Volume: 4
First Page: 21
Last Page: 22
Publisher Id: TOMINFOJ-4-21
DOI: 10.2174/1874431101004020021

Article History:

Electronic publication date: 28/5/2010
Collection year: 2010

© Acharya and Yu; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.








The advent of high-performance computing has benefited various disciplines in finding practical solutions to their problems, and our health care is no exception to this. Signal processing, image processing, and data mining tools have been developed for effective analysis of medical information, in order to help clinicians in making better diagnosis for treatment purposes.

Data mining has become a fundamental methodology for computing applications in medical informatics. Progress in data mining applications and its implications are manifested in the areas of information management in healthcare organizations, health informatics, epidemiology, patient care and monitoring systems, assistive technology, large-scale image analysis to information extraction and automatic identification of unknown classes. Various algorithms associated with data mining have significantly helped to understand medical data more clearly, by distinguishing pathological data from normal data, for supporting decision-making as well as visualization and identification of hidden complex relationships between diagnostic features of different patient groups. There are nine papers in this Special issue, covering different areas in medical informatics.

Paper 1 proposes a metabonomic study applied to medical diagnosis. Metabolomics and metabonomics belong to the “-omics” sciences. Particularly, metabonomic correlates the metabolic fingerprint to characteristics of specific patient categories. Usually, metabonomic studies are conducted by in-vitro spectroscopy. The aim of this study was to apply data-mining metabonomic techniques to the clinical diagnosis of genetic mutations in migraine sufferers. This is one of the first applications of advanced data-mining techniques to a mixed database consisting of hematochemical, instrumental, and genetic variables.

There has been an effort to use motion-related surface vibration, to detect independent finger motions is in practice. Accelerometers have been used in a finger tapping experiment to collect the finger motion related mechanical vibration patterns. The extracted time-domain and frequency-domain features were fed to back-propagation neural networks, to classify different finger motions. The insights provided in paper 2 will be helpful for prosthetic hand control.

Microscopic imaging is ubiquitous in several medical informatics disciplines, including but not limited to cancer informatics, neuro-informatics, and other emerging health informatics disciplines. The decision support applications frequently require the sensitive and specific detection of pathological changes in cells, which further require the accurate measurement of their geometric parameters. In paper 3, Du et al. have suggested that due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. They have evaluated the performance of multiple unsupervised data- mining techniques in cell image segmentation. The authors adopted four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, expectation maximisation (EM), Otsu’s threshold, and Galois Message Authentication Code (GMAC). These methods are comparatively evaluated, both quantitatively and qualitatively using synthetic simulated and real images.

In image processing, medical decision support applications frequently require the ability to identify and locate sharp discontinuities in an image, for feature extraction and interpretation of image content. In the paper 4, the authors have proposed a new edge detection technique based on the regional recursive hierarchical decomposition, using quadtree and post-filtration of edges by means of a finite difference operator. The authors have shown that in medical images of common origin, focal and/or penumbral blurred edges can be characterized by an estimated intensity gradient. The authors have also rigorously evaluated the performance of their algorithm on retinal and CT-scan images, and demonstrated promising results. Their algorithm efficiently decreases false dismissals of predominantly significant edges, and significantly lowers the false alarms found in classical approaches.

Face Recognition technology has been gaining prominence with proliferation of images and video. The Medical field has seen a huge change in data collection, from text to images to video. Paper 5 reports the application of face recognition technology in the medical field, to classify the images of the esophagus into three grades of esophagitis (inflammation of the esophagus). Herein, Principal Component Analysis, Fisher Face method and Independent Component Analysis, are used for classification of the images.

The growing healthcare burden and suffering due to life threatening diseases such as cancer and the escalating cost of drug development can be significantly reduced by design and development of novel methods in translational bioinformatics and allied medical informatics disciplines. Functional genomics is rapidly becoming the cornerstone of transformative medical research, and the resulting ability to interpret gene expression data from large genotype databases and associating it with the phenotype data is becoming increasingly relevant. Paper 6 proposes an associative pattern-mining based approach for feature extraction, in terms of two weighted similarity measures for the clustering of similar gene expression profiles. The authors evaluate the usability and efficacy of their methods, by applying the proposed techniques on three publically available multiclass cancer gene expression datasets, and support their results with an online biomedical literature search. Such Data mining approaches for the analysis of microarray gene expression offer promise for precise, accurate, and functionally robust analysis of genomics data in cancer classification. The efficiency and scalability of the presented technique also makes it well suited to the domains of medical image analysis for feature extraction and clustering of similar feature based rules.

Mining information from EMG signals to detect complex motion intention has attracted growing research attention, especially for upper-limb prosthetic hand applications. Paper 7 investigates the possibility to relate the around-shoulder muscle activity with the forearm motions. Experiments were conducted to record the EMG signals of different arm and hand motions. Data were analyzed to decide the contribution of each sensor, in order to distinguish the arm-hand motions as a function of the reaching time. Results showed that it is possible to differentiate hand grips and arm position while performing a reaching and grasping task.

Exercise heart rate has diagnostic implications, and the heart rate in onset and offset exercise conditions are compared in Paper 8. The raw heart rate is modelled using a first order system, so that this comparison can be made by using the gain and time constants of modelled heart rate recordings. This approach and results shown in this paper are of practical meaning to physiological monitoring and regulation during exercise and training.

Tissue microarray (TMA) technique is a high throughput technique, to provide a standardized set of images which are uniformly stained, facilitating effective automation of the evaluation of the specimen images. The TMA technique is widely used to evaluate hormone expression for diagnosis of breast cancer. If one considers the time taken for each of the steps in the tissue microarray process workflow, it can be observed that the maximum amount of time is taken by the analysis step. Paper 9 proposes a data mining approach, using colour analysis and neural networks for classification, in order to automate the analysis step and remove the bottleneck in the TMA workflow.

In this issue, we have made an earnest effort to provide various data mining methodologies applied to medical informatics, for the benefit of researchers, professionals and teachers.

Track Your Manuscript:


Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Table of Contents


Webmaster Contact: info@benthamopen.net
Copyright © 2023 Bentham Open